Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a p...Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.展开更多
Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characte...Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characteristics, and strain energy evolution of the Beishan shallow-layer granite used in triaxial unloading tests were investigated in this study. Three groups of triaxial tests, namely, conventional triaxial compression test(Group Ⅰ), maintaining deviatoric stress synchronously unloading confining pressure test(Group Ⅱ), and loading axial pressure synchronously unloading confining pressure test(Group Ⅲ), were carried out for the cylindrical granite specimens. AE monitoring device was utilized in these tests to determine the degree to which the AE waves and AE events reflected the degree of rock damage. In addition, the crack stress thresholds of the specimens were determined by volumetric strain method and AE parameter method, and strain energy evolution of the rock was explored in different damage stages. The results show that the shallow-layer granite experiences brittle failure during the triaxial loading test and unloading test, and the rock has a greater damage degree during the unloading test. The crack stress thresholds of these samples vary greatly between tests, but the threshold ratios of all samples are similar in the same crack damage stage. The Mogi-Coulomb strength criterion can better describe the unloading failure strength of the rock. The evolution of the AE parameter characteristics and strain energy differs between the specimens used in different stress path tests. The dissipative strain energy is the largest in Group Ⅱ and the smallest in Group Ⅰ.展开更多
Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and fou...Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force.展开更多
Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in ...Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in the HVI tests and classified the damage into non-catastrophic damage and catastrophic damage.We proposed a numerical simulation method to further study non-catastrophic damage and revealed the characteristics and mechanisms of non-catastrophic damage affected by impact conditions and internal pressures.The fragments of the catastrophically damaged COPVs were collected after the tests.The crack distribution and propagation process of the catastrophic ruptures of the COPVs were analyzed.Our findings contribute to understanding the damage characteristics and mechanisms of COPVs by HVIs.展开更多
Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to su...Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency.展开更多
To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloadin...To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems.展开更多
The skin's normal color is primarily determined by the quantity and distribution of pigment,the level of hemoglobin in the skin's blood vessels,and various optical factors.Additionally,mechanical damage from c...The skin's normal color is primarily determined by the quantity and distribution of pigment,the level of hemoglobin in the skin's blood vessels,and various optical factors.Additionally,mechanical damage from clothing renders certain areas of the body more susceptible to hyperpigmentation,such as the elbows and knees.According to research,various factors such as gender and weight have been found to influence skin color.The mechanism of body skin pigmentation has been extensively studied with a particular focus on melanogenesis and related signaling pathways.Therefore,this article primarily focuses on elucidating the mechanisms governing body pigmentation while discussing strategies for managing skin whitening,encompassing influential factors and whitening methods.展开更多
A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress ch...A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress characteristics obtained by the finite element (FE) analysis, and the other is associated with the material fatigue property identified from the fatigue test data of standard specimens. The wear is modeled by the energy wear law to simulate the contact geometry evolution. A two-dimensional (2D) plane strain FE implementation of the damage mechanics model and the energy wear model is presented in the platform of ABAQUS to simulate the evolutions of the fatigue damage and the wear scar. The effect of the specimen thickness is also investigated. The predicted results of the crack initiation site and the fretting fatigue life agree well with available experimental data. Comparisons are made with the critical plane Smith- Watson-Topper (SWT) method.展开更多
The effects of inclusions in powder superalloy FGH96 on low-cycle fatigue life were studied, and a low-cycle crack initiation life prediction model based on the theory of damage mechanics was proposed. The damage char...The effects of inclusions in powder superalloy FGH96 on low-cycle fatigue life were studied, and a low-cycle crack initiation life prediction model based on the theory of damage mechanics was proposed. The damage characterization parameter was proposed after the construction of damage evolution equations. Fatigue tests of the powder superalloy specimens with and without inclusion were conducted at 530 and 600 ℃, and the model verification was carried out for specimens with elliptical, semi-elliptical, polygon and strip-shaped surface/subsurface inclusion. The stress analysis was performed by finite element simulation and the predicted life was calculated. The results showed a satisfying agreement between predicted and experimental life.展开更多
The present study deals with the experimental,finite element(FE)and analytical assessment of low ballistic impact response of proposed flexible‘green’composite make use of naturally available jute and rubber as the ...The present study deals with the experimental,finite element(FE)and analytical assessment of low ballistic impact response of proposed flexible‘green’composite make use of naturally available jute and rubber as the constituents of the composite with stacking sequences namely jute/rubber/jute(JRJ),jute/rubber/rubber/jute(JRRJ)and jute/rubber/jute/rubber/jute(JRJRJ).Ballistic impact tests were carried out by firing a conical projectile using a gas gun apparatus at lower range of ballistic impact regime.The ballistic impact response of the proposed flexible composites are assesses based on energy absorption and damage mechanism.Results revealed that inclusion of natural rubber aids in better energy absorption and mitigating the failure of the proposed composite.Among the three different stacking sequences of flexible composites considered,JRJRJ provides better ballistic performance compared to its counterparts.The damage study reveals that the main mechanism of failure involved in flexible composites is matrix tearing as opposed to matrix cracking in stiff composites indicating that the proposed flexible composites are free from catastrophic failure.Results obtained from experimental,FE and analytical approach pertaining to energy absorption and damage mechanism agree well with each other.The proposed flexible composites due to their exhibited energy absorption capabilities and damage mechanism are best suited as claddings for structural application subjected to impact with an aim of protecting the main structural component from being failed catastrophically.展开更多
In order to solve the problem of rib spalling of high coal walls in fully-mechanized(HCWFM)mines,we used the principle of damage mechanics to analyze coal wall rib spalling.The results show that coal wall rib spalli...In order to solve the problem of rib spalling of high coal walls in fully-mechanized(HCWFM)mines,we used the principle of damage mechanics to analyze coal wall rib spalling.The results show that coal wall rib spalling is,to a certain degree,a macro-performance of the development of micro-cracks.We built a mechanical model to simulate the damage to the front of coal walls,carried out theoretical calculations of the damage parameters,analyzed the effect of mining height,original cracks,seam strength,horizontal stress,vertical displacement of the coal walls and other parameters on coal wall rib spalling, which conform well with the results of our field measurements and numerical simulation.The key to control coal wall rib spalling is to control the development of cracks in coal walls.Accelerating the speed of advancing the working face,improving the setting load of support and the horizontal force of the guard board,strengthening coal walls and other technical measures can effectively reduce the degree of damage to the coal walls and control coal wall rib spalling at HCWFM faces.展开更多
We in this paper exploit time series algorithm based deep learning in forecasting damage mechanics problems.The methodologies that are able to work accurately for less computational and resolving attempts are a signif...We in this paper exploit time series algorithm based deep learning in forecasting damage mechanics problems.The methodologies that are able to work accurately for less computational and resolving attempts are a significant demand nowadays.Relied on learning an amount of information from given data,the long short-term memory(LSTM)method and multi-layer neural networks(MNN)method are applied to predict solutions.Numerical examples are implemented for predicting fracture growth rates of L-shape concrete specimen under load ratio,single-edge-notched beam forced by 4-point shear and hydraulic fracturing in permeable porous media problems such as storage-toughness fracture regime and fracture-height growth in Marcellus shale.The predicted results by deep learning algorithms are well-agreed with experimental data.展开更多
According to the principle of damage mechanics,the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular c...According to the principle of damage mechanics,the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular cast iron occurs when the applied stress is more than a certain extent,and the damage variable increases with stress. The evolutional law of damage variable as a function of stress was obtained.The damage threshold of nodular cast iron increases with nodularity,but it is below the yield strength,which provides reference significance to the design of machinery structure and the choice of materials.The critical damage variable is not related to the nodularity,which is about 0. 060-0. 068.展开更多
The prediction of the behavior of reinforced concrete beams under bending is essential for the perfect design of these elements.Usually,the classical models do not incorporate the physical nonlinear behavior of concre...The prediction of the behavior of reinforced concrete beams under bending is essential for the perfect design of these elements.Usually,the classical models do not incorporate the physical nonlinear behavior of concrete under tension and compression,which can underestimate the deformations in the structural element under short and long-term loads.In the present work,a variational formulation based on the Finite Element Method is presented to predict the flexural behavior of reinforced concrete beams.The physical nonlinearity due cracking of concrete is considered by utilization of damage concept in the definition of constitutive models,and the lamination theory it is used in discretization of section cross of beams.In the layered approach,the reinforced concrete element is formulated as a laminated composite that consists of thin layers,of concrete or steel that has been modeled as elastic-perfectly plastic material.The comparison of numerical load-displacement results with experimental results found in the literature demonstrates a good approximation of the model and validates the application of the damage model in the Classical Laminate Theory to predict mechanical failure of reinforced concrete beam.The results obtained by the numerical model indicated a variation in the stress-strain behavior of each beam,while for under-reinforced beams,the compressive stresses did not reach the peak stress but the stress-strain behavior was observed in the nonlinear regime at failure,for the other beams,the concrete had reached its ultimate strain,and the beam’s neutral axis was close to the centroid of the cross-section.展开更多
This paper presents the ductility characterization for a medium carbon steel, for two microstructural conditions, that has been evaluated using the continuum damage mechanics theory, as proposed by Kachanov and develo...This paper presents the ductility characterization for a medium carbon steel, for two microstructural conditions, that has been evaluated using the continuum damage mechanics theory, as proposed by Kachanov and developed by Lemaitre. Tensile tests were carried out using loading-unloading cycles in order to capture the gradual deterioration of the elastic modulus, which may be linked to the ductile damage increase with increasing plastic strain. The mechanical parameters for the isotropic damage evolution equation were obtained and then used as inputs for a plasticity-damage coupled nu- merical algorithm, validated through numerical simulations of the experimental tensile tests. A comparison between the SAE 1050 steels studied and two carbon steel alloys (obtained from the literature), provided some basic understanding of the influence of the carbon level on the evolution of the damage parameters. An empiric relationship for this set of parameters, which can provide useful data for preliminary studies envisaging prediction of ductile failure in carbon steels, is also presented.展开更多
This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how c...This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how coplanar flaw angle and load type impact the strength and deformation behavior and microscopic damage mechanism.Results indicated that being fluctuated before rising with increasing fissure angle under monotonic loading,the peak strength of the specimen first increased slowly and then steeply under cyclic loading.The effect of multilevel cyclic loading on the mechanical parameters was more significant.For a single fatigue stage,the specimen underwent greater deformation in early cycles,which subsequently stabilized.Similar variation pattern was also reflected by AE count/energy/b-value.Crack behaviors were dominated by the fissure angle and load type and medium-scale crack accounted for 74.83%–86.44%of total crack.Compared with monotonic loading,crack distribution of specimen under cyclic loading was more complicated.Meanwhile,a simple model was proposed to describe the damage evolution of sandstone under cyclic loading.Finally,SEM images revealed that the microstructures at the fracture were mainly composed of intergranular fracture,and percentage of transgranular fracture jumped under cyclic loading due to the rapid release of elastic energy caused by high loading rate.展开更多
To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magneti...To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magnetic resonance, scanning electron microscope tests, and uniaxial compression combined with acoustic emission(AE) tests. Results show that with the increase of freeze-thaw processes,the mass, uniaxial compression strength, and elastic modulus of the anhydrite specimens decrease while the porosity and plasticity characteristics increase.For example, after 120 cycles, the uniaxial compression strength and elastic modulus decrease by 46.54% and 60.16%, and the porosity increase by 75%. Combined with the evolution trend of stressstrain curves and the detected events, three stages were labeled to investigate the AE characteristics in freeze-thaw weathered anhydrite rock. It is found that with the increase of freeze-thaw cycles, the proportions of AE counts in stage Ⅰ and stage Ⅱ show a decaying exponential trend. Contrarily, the proportion of AE counts in stage Ⅲ displays an exponential ascending trend. Meanwhile, as the freeze-thaw cycles increase, the low-frequency AE signals increase while the intermediate-frequency AE signals decrease. After 120 cycles, the proportion of low-frequency AE signals increases by 168.95%, and the proportion of intermediate-frequency AE signals reduces by 81.14%. It is concluded that the microtensile cracking events occupy a dominant position during the loading process. With the increase of freeze-thaw cycles, the b value of samples decreases.After 120 cycles, b value decreases by 27.2%, which means that the proportion of cracking events in rocks with small amplitude decreases. Finally, it is proposed that the freeze-thaw damage mechanism of anhydrite is also characterized by the water chemical softening effect.展开更多
Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by exte...Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by extensive and continuous heat conduction from surrounding rocks in high-geothermal tunnels buried more than 100 m(temperature from 28C to 100C).To investigate the damage mechanism,we examined the time-varying behaviors of grouted rock bolts in both constant and variable temperature curing environments and their damage due to the coupling effects of high temperature and humidity through mechanical and micro-feature tests,including uniaxial compression test,pull-out test,computed tomography(CT)scans,X-ray diffraction(XRD)test,thermogravimetric analysis(TGA),etc.,and further analyzed the relationship between grout properties and anchorage capability.In order to facilitate a rapid assessment and control of the anchorage performance of anchors in different conditions,results of the interface bond degradation tests were correlated to environment parameters based on the damage model of interfacial bond stress proposed.Accordingly,a thermal hazard classification criterion for anchorage design in high-geothermal tunnels was suggested.Based on the reported results,although high temperature accelerated the early-stage hydration reaction of grouting materials,it affected the distribution and quantity of hydration products by inhibiting hydration degree,thus causing mechanical damage to the anchorage system.There was a significant positive correlation between the strength of the grouting material and the anchoring force.Influenced by the changes in grout properties,three failure patterns of rock bolts typically existed.Applying a hot-wet curing regime results in less reduction in anchorage force compared to the hot-dry curing conditions.The findings of this study would contribute to the design and investigations of grouted rock bolts in high-geothermal tunnels.展开更多
To study the damage mechanism of multi‐anchor piles in tunnel crossing landslide area under earthquake,the damping performance of multi‐anchor piles was discussed.The energy dissipation springs were used as the opti...To study the damage mechanism of multi‐anchor piles in tunnel crossing landslide area under earthquake,the damping performance of multi‐anchor piles was discussed.The energy dissipation springs were used as the optimization device of the anchor head to carry out the shaking table comparison test on the reinforced slope.The Hilbert spectrum and Hilbert marginal spectrum were proposed to analyze the seismic damage mechanism of the multi‐anchor piles,and the peak Fourier spectrum amplitude(PFSA)was used to verify the effectiveness of the method.The results show that the seismic energy is concentrated in the high‐frequency component(30-40Hz)of the Hilbert spectrum and the low‐frequency component(12-30 Hz)of the marginal spectrum.This indicates that they can be combined with the distribution law of the PFSA to identify the overall and local dynamic responses of the multi‐anchored piles,respectively.The stretchable deformation of the energy‐dissipation springs improves the coordination of the multi‐anchor piles,resulting in better pile integrity.The damage mechanism of the multi‐anchor piles is elucidated based on the energy method:local damage at the top and middle areas of the multi‐anchor piles is mainly caused by the low‐frequency component(12-30 Hz)of the marginal spectrum under the action of 0.15g and 0.20g seismic intensities.As the seismic intensity increases to 0.30g,the dynamic response of the slope is further amplified by the high‐frequency component(30-40 Hz)of the Hilbert energy spectrum,which leads to the overall damage of the multi‐anchor piles.展开更多
In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field w...In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field within the ballastless track bed shows significant non-uniformity due to the large difference in the materials of various structure layers,leading to a considerable difference in the force bearing of different structure layers.Unit Ballastless Track Bed(UBTB)is most significantly affected by temperature gradient.The thermal deformation of interlayers within UBTB follows the trend of ellipsoid-shape buckling under the effect of the temperature gradient,resulting in a variation of the contact relationship between structure layers and a significant periodic irregularity on the rail.When the train travels on the periodically irregular rail,the structure layers are locally contacted,and the contact zone moves with the variation of the wheel position.This wheel-followed local contact greatly magnifies the interlayer stress,causes interlayer damage,and leads to a considerable increase in the bending moment of the track slab.Continuous Ballastless Track Bed(CBTB)is most significantly affected by the overall temperature variation,which may cause damage to the joint in CBTB.Under the combined action of the overall temperature rise and the temperature gradient,the interlayer damage continuously expands,resulting in bonding failure between structural layers.The thermal force in the continuous track slabs will cause the up-heave buckling and the sudden large deformation of the track slab,and the loss of constraint boundary of the horizontal stability.For the design of a ballastless track structure,the change of bearing status and structural damage related to the incompatible thermal deformation of interlayers should be considered.展开更多
基金supported by the National Key Research and Development Program of China,Nos.2017YFE0122900(to BH),2019YFA0110800(to WL),2019YFA0903802(to YW),2021YFA1101604(to LW),2018YFA0108502(to LF),and 2020YFA0804003(to JW)the National Natural Science Foundation of China,Nos.31621004(to WL,BH)and 31970821(to YW)+1 种基金CAS Project for Young Scientists in Basic Research,No.YSBR-041(to YW)Joint Funds of the National Natural Science Foundation of China,No.U21A20396(to BH)。
文摘Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.
基金supported by the National Natural Science Foundation of China (Grant No. 52278420)the China Atomic Energy Authority (CAEA) for China’s URL Development Program and the Geological Disposal Program。
文摘Rock has mechanical characteristics and a fracture damage mechanism that are closely related to its loading history and loading path. The mechanical properties, fracture damage features, acoustic emission(AE) characteristics, and strain energy evolution of the Beishan shallow-layer granite used in triaxial unloading tests were investigated in this study. Three groups of triaxial tests, namely, conventional triaxial compression test(Group Ⅰ), maintaining deviatoric stress synchronously unloading confining pressure test(Group Ⅱ), and loading axial pressure synchronously unloading confining pressure test(Group Ⅲ), were carried out for the cylindrical granite specimens. AE monitoring device was utilized in these tests to determine the degree to which the AE waves and AE events reflected the degree of rock damage. In addition, the crack stress thresholds of the specimens were determined by volumetric strain method and AE parameter method, and strain energy evolution of the rock was explored in different damage stages. The results show that the shallow-layer granite experiences brittle failure during the triaxial loading test and unloading test, and the rock has a greater damage degree during the unloading test. The crack stress thresholds of these samples vary greatly between tests, but the threshold ratios of all samples are similar in the same crack damage stage. The Mogi-Coulomb strength criterion can better describe the unloading failure strength of the rock. The evolution of the AE parameter characteristics and strain energy differs between the specimens used in different stress path tests. The dissipative strain energy is the largest in Group Ⅱ and the smallest in Group Ⅰ.
文摘Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force.
基金supported by the National Natural Science Foundation of China(Grant Nos.11672097,11772113)。
文摘Ground-based tests are important for studying hypervelocity impact(HVI)damage to spacecraft pressure vessels in the orbital debris environment.We analyzed the damage to composite overwrapped pressure vessels(COPVs)in the HVI tests and classified the damage into non-catastrophic damage and catastrophic damage.We proposed a numerical simulation method to further study non-catastrophic damage and revealed the characteristics and mechanisms of non-catastrophic damage affected by impact conditions and internal pressures.The fragments of the catastrophically damaged COPVs were collected after the tests.The crack distribution and propagation process of the catastrophic ruptures of the COPVs were analyzed.Our findings contribute to understanding the damage characteristics and mechanisms of COPVs by HVIs.
基金Projects(52225403,U2013603,42377143)supported by the National Natural Science Foundation of ChinaProject(2023NSFSC0004)supported by the Sichuan Science and Technology Program,China+1 种基金Project(2023YFB2390200)supported by the National Key R&D Program-Young Scientist Program,ChinaProject(RCJC20210706091948015)supported by the Shenzhen Science Foundation for Distinguished Young Scholars,China。
文摘Laser technology holds significant promise for enhancing rock-breaking efficiency.Experimental investigations were carried out on sandstone subjected to laser radiation,aiming to elucidate its response mechanism to such radiation.The uniaxial compressive strength of sandstone notably decreases by 22.1%–54.7%following exposure to a 750 W laser for 30 s,indicating a substantial weakening effect.Furthermore,the elastic modulus and Poisson ratio of sandstone exhibit an average decrease of 33.7%and 25.9%,respectively.Simultaneously,laser radiation reduces the brittleness of sandstone,increases the dissipated energy proportion,and shifts the failure mode from tensile to tension-shear composite failure.Following laser radiation,both the number and energy of acoustic emission events in the sandstone register a substantial increase,with a more dispersed distribution of these events.In summary,laser radiation induces notable damage to the mechanical properties of sandstone,leading to a substantial decrease in elastic energy storage capacity.Laser rock breaking technology is expected to be applied in hard rock breaking engineering to significantly reduce the difficulty of rock breaking and improve rock breaking efficiency.
基金This research was financially supported by the Scientific and technological research projects in Sichuan province(Grant Nos.2022YFSY0007 and 2021YFH0010)the National Scientific Science Foundation of China(Grant No.U20A20266).
文摘To investigate the specific creep behavior of ultra-deep buried salt during oil and gas exploitation,a set of triaxial creep experiments was conducted at elevated temperatures with constant axial pressure and unloading confining pressure conditions.Experimental results show that the salt sample deforms more significantly with the increase of applied temperature and deviatoric loading.The accelerated creep phase is not occurring until the applied temperature reaches 130℃,and higher temperature is beneficial to the occurrence of accelerated creep.To describe the specific creep behavior,a novel three-dimensional(3D)creep constitutive model is developed that incorporates the thermal and mechanical variables into mechanical elements.Subsequently,the standard particle swarm optimization(SPSO)method is adopted to fit the experimental data,and the sensibility of key model parameters is analyzed to further illustrate the model function.As a result,the model can accurately predict the creep behavior of salt under the coupled thermo-mechanical effect in deep-buried condition.Based on the research results,the creep mechanical behavior of wellbore shrinkage is predicted in deep drilling projects crossing salt layer,which has practical implications for deep rock mechanics problems.
文摘The skin's normal color is primarily determined by the quantity and distribution of pigment,the level of hemoglobin in the skin's blood vessels,and various optical factors.Additionally,mechanical damage from clothing renders certain areas of the body more susceptible to hyperpigmentation,such as the elbows and knees.According to research,various factors such as gender and weight have been found to influence skin color.The mechanism of body skin pigmentation has been extensively studied with a particular focus on melanogenesis and related signaling pathways.Therefore,this article primarily focuses on elucidating the mechanisms governing body pigmentation while discussing strategies for managing skin whitening,encompassing influential factors and whitening methods.
基金supported by the National Natural Science Foundation of China(No.11002010)
文摘A new continuum damage mechanics model for fretting fatigue life prediction is established. In this model, the damage evolution rate is described by two kinds of quantities. One is associated with the cyclic stress characteristics obtained by the finite element (FE) analysis, and the other is associated with the material fatigue property identified from the fatigue test data of standard specimens. The wear is modeled by the energy wear law to simulate the contact geometry evolution. A two-dimensional (2D) plane strain FE implementation of the damage mechanics model and the energy wear model is presented in the platform of ABAQUS to simulate the evolutions of the fatigue damage and the wear scar. The effect of the specimen thickness is also investigated. The predicted results of the crack initiation site and the fretting fatigue life agree well with available experimental data. Comparisons are made with the critical plane Smith- Watson-Topper (SWT) method.
基金sponsored by AECC Beijing Institute of Aeronautical Materialsfunded by National High-tech R&D Program of China (863 Program) (No. 2015AA034401)。
文摘The effects of inclusions in powder superalloy FGH96 on low-cycle fatigue life were studied, and a low-cycle crack initiation life prediction model based on the theory of damage mechanics was proposed. The damage characterization parameter was proposed after the construction of damage evolution equations. Fatigue tests of the powder superalloy specimens with and without inclusion were conducted at 530 and 600 ℃, and the model verification was carried out for specimens with elliptical, semi-elliptical, polygon and strip-shaped surface/subsurface inclusion. The stress analysis was performed by finite element simulation and the predicted life was calculated. The results showed a satisfying agreement between predicted and experimental life.
文摘The present study deals with the experimental,finite element(FE)and analytical assessment of low ballistic impact response of proposed flexible‘green’composite make use of naturally available jute and rubber as the constituents of the composite with stacking sequences namely jute/rubber/jute(JRJ),jute/rubber/rubber/jute(JRRJ)and jute/rubber/jute/rubber/jute(JRJRJ).Ballistic impact tests were carried out by firing a conical projectile using a gas gun apparatus at lower range of ballistic impact regime.The ballistic impact response of the proposed flexible composites are assesses based on energy absorption and damage mechanism.Results revealed that inclusion of natural rubber aids in better energy absorption and mitigating the failure of the proposed composite.Among the three different stacking sequences of flexible composites considered,JRJRJ provides better ballistic performance compared to its counterparts.The damage study reveals that the main mechanism of failure involved in flexible composites is matrix tearing as opposed to matrix cracking in stiff composites indicating that the proposed flexible composites are free from catastrophic failure.Results obtained from experimental,FE and analytical approach pertaining to energy absorption and damage mechanism agree well with each other.The proposed flexible composites due to their exhibited energy absorption capabilities and damage mechanism are best suited as claddings for structural application subjected to impact with an aim of protecting the main structural component from being failed catastrophically.
基金provided by the Independent Research Fund(No.SKLCRSM09X02)the Open Research Fund of the State Key Laboratory of Coal Resources and Safety Mining (No.08KF12)the Qinglan Project of Jiangsu Province and the Graduate Students Innovation Fund of Colleges and Universities in Jiangsu(No.CX09B_120Z)
文摘In order to solve the problem of rib spalling of high coal walls in fully-mechanized(HCWFM)mines,we used the principle of damage mechanics to analyze coal wall rib spalling.The results show that coal wall rib spalling is,to a certain degree,a macro-performance of the development of micro-cracks.We built a mechanical model to simulate the damage to the front of coal walls,carried out theoretical calculations of the damage parameters,analyzed the effect of mining height,original cracks,seam strength,horizontal stress,vertical displacement of the coal walls and other parameters on coal wall rib spalling, which conform well with the results of our field measurements and numerical simulation.The key to control coal wall rib spalling is to control the development of cracks in coal walls.Accelerating the speed of advancing the working face,improving the setting load of support and the horizontal force of the guard board,strengthening coal walls and other technical measures can effectively reduce the degree of damage to the coal walls and control coal wall rib spalling at HCWFM faces.
基金The author would like to thank European Commission H2020-MSCA-RISE BESTOFRAC project for research funding.
文摘We in this paper exploit time series algorithm based deep learning in forecasting damage mechanics problems.The methodologies that are able to work accurately for less computational and resolving attempts are a significant demand nowadays.Relied on learning an amount of information from given data,the long short-term memory(LSTM)method and multi-layer neural networks(MNN)method are applied to predict solutions.Numerical examples are implemented for predicting fracture growth rates of L-shape concrete specimen under load ratio,single-edge-notched beam forced by 4-point shear and hydraulic fracturing in permeable porous media problems such as storage-toughness fracture regime and fracture-height growth in Marcellus shale.The predicted results by deep learning algorithms are well-agreed with experimental data.
基金the Education Committee of Hebei for the financial support ( B2003102 )
文摘According to the principle of damage mechanics,the damage characteristics of ferrite nodular cast iron under uniaxial stress were studied by measuring electric resistance. The results show that the damage in nodular cast iron occurs when the applied stress is more than a certain extent,and the damage variable increases with stress. The evolutional law of damage variable as a function of stress was obtained.The damage threshold of nodular cast iron increases with nodularity,but it is below the yield strength,which provides reference significance to the design of machinery structure and the choice of materials.The critical damage variable is not related to the nodularity,which is about 0. 060-0. 068.
基金funded by CNPq,grant numbers 313693/2019-6 and 408135/2021-2State University of Feira de Santana,grant numbers 034/2021 and 064/2021.
文摘The prediction of the behavior of reinforced concrete beams under bending is essential for the perfect design of these elements.Usually,the classical models do not incorporate the physical nonlinear behavior of concrete under tension and compression,which can underestimate the deformations in the structural element under short and long-term loads.In the present work,a variational formulation based on the Finite Element Method is presented to predict the flexural behavior of reinforced concrete beams.The physical nonlinearity due cracking of concrete is considered by utilization of damage concept in the definition of constitutive models,and the lamination theory it is used in discretization of section cross of beams.In the layered approach,the reinforced concrete element is formulated as a laminated composite that consists of thin layers,of concrete or steel that has been modeled as elastic-perfectly plastic material.The comparison of numerical load-displacement results with experimental results found in the literature demonstrates a good approximation of the model and validates the application of the damage model in the Classical Laminate Theory to predict mechanical failure of reinforced concrete beam.The results obtained by the numerical model indicated a variation in the stress-strain behavior of each beam,while for under-reinforced beams,the compressive stresses did not reach the peak stress but the stress-strain behavior was observed in the nonlinear regime at failure,for the other beams,the concrete had reached its ultimate strain,and the beam’s neutral axis was close to the centroid of the cross-section.
基金The authors would like to thanks Brasmetal Waeholtz for providing the material samples for the tests GMSIE- POLI/USP for the tensile test machine and CAPES for the scholarship of SPT provided for the development of this study.
文摘This paper presents the ductility characterization for a medium carbon steel, for two microstructural conditions, that has been evaluated using the continuum damage mechanics theory, as proposed by Kachanov and developed by Lemaitre. Tensile tests were carried out using loading-unloading cycles in order to capture the gradual deterioration of the elastic modulus, which may be linked to the ductile damage increase with increasing plastic strain. The mechanical parameters for the isotropic damage evolution equation were obtained and then used as inputs for a plasticity-damage coupled nu- merical algorithm, validated through numerical simulations of the experimental tensile tests. A comparison between the SAE 1050 steels studied and two carbon steel alloys (obtained from the literature), provided some basic understanding of the influence of the carbon level on the evolution of the damage parameters. An empiric relationship for this set of parameters, which can provide useful data for preliminary studies envisaging prediction of ductile failure in carbon steels, is also presented.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.42077231 and 51574156).
文摘This study aims to investigate the mechanical response and acoustic emission(AE)characteristic of pre-flawed sandstone under both monotonic and multilevel constant-amplitude cyclic loads.Specifically,we explored how coplanar flaw angle and load type impact the strength and deformation behavior and microscopic damage mechanism.Results indicated that being fluctuated before rising with increasing fissure angle under monotonic loading,the peak strength of the specimen first increased slowly and then steeply under cyclic loading.The effect of multilevel cyclic loading on the mechanical parameters was more significant.For a single fatigue stage,the specimen underwent greater deformation in early cycles,which subsequently stabilized.Similar variation pattern was also reflected by AE count/energy/b-value.Crack behaviors were dominated by the fissure angle and load type and medium-scale crack accounted for 74.83%–86.44%of total crack.Compared with monotonic loading,crack distribution of specimen under cyclic loading was more complicated.Meanwhile,a simple model was proposed to describe the damage evolution of sandstone under cyclic loading.Finally,SEM images revealed that the microstructures at the fracture were mainly composed of intergranular fracture,and percentage of transgranular fracture jumped under cyclic loading due to the rapid release of elastic energy caused by high loading rate.
基金the Fundamental Research Funds for the Central Universities(Project No.2022CDJKYJH037)the National Key R&D Program of China(Grant No.2021YFB3901402)。
文摘To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magnetic resonance, scanning electron microscope tests, and uniaxial compression combined with acoustic emission(AE) tests. Results show that with the increase of freeze-thaw processes,the mass, uniaxial compression strength, and elastic modulus of the anhydrite specimens decrease while the porosity and plasticity characteristics increase.For example, after 120 cycles, the uniaxial compression strength and elastic modulus decrease by 46.54% and 60.16%, and the porosity increase by 75%. Combined with the evolution trend of stressstrain curves and the detected events, three stages were labeled to investigate the AE characteristics in freeze-thaw weathered anhydrite rock. It is found that with the increase of freeze-thaw cycles, the proportions of AE counts in stage Ⅰ and stage Ⅱ show a decaying exponential trend. Contrarily, the proportion of AE counts in stage Ⅲ displays an exponential ascending trend. Meanwhile, as the freeze-thaw cycles increase, the low-frequency AE signals increase while the intermediate-frequency AE signals decrease. After 120 cycles, the proportion of low-frequency AE signals increases by 168.95%, and the proportion of intermediate-frequency AE signals reduces by 81.14%. It is concluded that the microtensile cracking events occupy a dominant position during the loading process. With the increase of freeze-thaw cycles, the b value of samples decreases.After 120 cycles, b value decreases by 27.2%, which means that the proportion of cracking events in rocks with small amplitude decreases. Finally, it is proposed that the freeze-thaw damage mechanism of anhydrite is also characterized by the water chemical softening effect.
基金support from the National Natural Science Foundation of China(Grant No.52208387)Open Fund of Key Laboratory of Geohazard Prevention of Hilly Mountains,Ministry of Land and Resources,China(Fujian Key Laboratory of Geohazard Prevention)(Grant No.FJKLGH2022K001).
文摘Full-length grouted bolts play a crucial role in geotechnical engineering thanks to their excellent stability.However,few studies have been concerned with the degrading performance of grouted rock bolts caused by extensive and continuous heat conduction from surrounding rocks in high-geothermal tunnels buried more than 100 m(temperature from 28C to 100C).To investigate the damage mechanism,we examined the time-varying behaviors of grouted rock bolts in both constant and variable temperature curing environments and their damage due to the coupling effects of high temperature and humidity through mechanical and micro-feature tests,including uniaxial compression test,pull-out test,computed tomography(CT)scans,X-ray diffraction(XRD)test,thermogravimetric analysis(TGA),etc.,and further analyzed the relationship between grout properties and anchorage capability.In order to facilitate a rapid assessment and control of the anchorage performance of anchors in different conditions,results of the interface bond degradation tests were correlated to environment parameters based on the damage model of interfacial bond stress proposed.Accordingly,a thermal hazard classification criterion for anchorage design in high-geothermal tunnels was suggested.Based on the reported results,although high temperature accelerated the early-stage hydration reaction of grouting materials,it affected the distribution and quantity of hydration products by inhibiting hydration degree,thus causing mechanical damage to the anchorage system.There was a significant positive correlation between the strength of the grouting material and the anchoring force.Influenced by the changes in grout properties,three failure patterns of rock bolts typically existed.Applying a hot-wet curing regime results in less reduction in anchorage force compared to the hot-dry curing conditions.The findings of this study would contribute to the design and investigations of grouted rock bolts in high-geothermal tunnels.
基金Science and technology development project of China Railway Ninth Bureau Group Co.,Ltd,Grant/Award Number:DLF‐ML‐JSFW‐2021‐09Science and Technology Development Project of China Railway Research Institute Co.Ltd,Grant/Award Number:2017‐KJ008‐Z008‐XB+2 种基金Gansu Province Youth Science and Technology Fund program,China,Grant/Award Number:21JR7RA739Natural Science Foundation of Gansu Province,China,Grant/Award Number:21JR7RA738National Key R&D Program of China,Grant/Award Number:2018YFC1504901。
文摘To study the damage mechanism of multi‐anchor piles in tunnel crossing landslide area under earthquake,the damping performance of multi‐anchor piles was discussed.The energy dissipation springs were used as the optimization device of the anchor head to carry out the shaking table comparison test on the reinforced slope.The Hilbert spectrum and Hilbert marginal spectrum were proposed to analyze the seismic damage mechanism of the multi‐anchor piles,and the peak Fourier spectrum amplitude(PFSA)was used to verify the effectiveness of the method.The results show that the seismic energy is concentrated in the high‐frequency component(30-40Hz)of the Hilbert spectrum and the low‐frequency component(12-30 Hz)of the marginal spectrum.This indicates that they can be combined with the distribution law of the PFSA to identify the overall and local dynamic responses of the multi‐anchored piles,respectively.The stretchable deformation of the energy‐dissipation springs improves the coordination of the multi‐anchor piles,resulting in better pile integrity.The damage mechanism of the multi‐anchor piles is elucidated based on the energy method:local damage at the top and middle areas of the multi‐anchor piles is mainly caused by the low‐frequency component(12-30 Hz)of the marginal spectrum under the action of 0.15g and 0.20g seismic intensities.As the seismic intensity increases to 0.30g,the dynamic response of the slope is further amplified by the high‐frequency component(30-40 Hz)of the Hilbert energy spectrum,which leads to the overall damage of the multi‐anchor piles.
基金supported by the National Natural Science Foundation of China(grant numbers 52278466).
文摘In the service period,the instability of ballastless track bed are mostly related to the damage of interlayers which are mainly resulted from the incompatible thermal deformation of interlayers.The temperature field within the ballastless track bed shows significant non-uniformity due to the large difference in the materials of various structure layers,leading to a considerable difference in the force bearing of different structure layers.Unit Ballastless Track Bed(UBTB)is most significantly affected by temperature gradient.The thermal deformation of interlayers within UBTB follows the trend of ellipsoid-shape buckling under the effect of the temperature gradient,resulting in a variation of the contact relationship between structure layers and a significant periodic irregularity on the rail.When the train travels on the periodically irregular rail,the structure layers are locally contacted,and the contact zone moves with the variation of the wheel position.This wheel-followed local contact greatly magnifies the interlayer stress,causes interlayer damage,and leads to a considerable increase in the bending moment of the track slab.Continuous Ballastless Track Bed(CBTB)is most significantly affected by the overall temperature variation,which may cause damage to the joint in CBTB.Under the combined action of the overall temperature rise and the temperature gradient,the interlayer damage continuously expands,resulting in bonding failure between structural layers.The thermal force in the continuous track slabs will cause the up-heave buckling and the sudden large deformation of the track slab,and the loss of constraint boundary of the horizontal stability.For the design of a ballastless track structure,the change of bearing status and structural damage related to the incompatible thermal deformation of interlayers should be considered.