The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scann...The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.展开更多
Rock-ice avalanches have frequently occurred in the Eastern Himalayan Syntaxis region due to climate change and active tectonic movements.These events commonly trigger catastrophic geohazard chains,including debris fl...Rock-ice avalanches have frequently occurred in the Eastern Himalayan Syntaxis region due to climate change and active tectonic movements.These events commonly trigger catastrophic geohazard chains,including debris flows,river blockages,and floods.This study focuses on the Zelongnong Basin,analyzing the geomorphic and dynamic characteristics of high-altitude disasters.The basin exhibits typical vertical zonation,with disaster sources initiating at elevations exceeding 4000 m and runout distances reaching up to 10 km.The disaster chain movement involves complex dynamic effects,including impact disintegration,soil-rock mixture arching,dynamic erosion,and debris deposition,enhancing understanding of the flow behavior and dynamic characteristics of rock-ice avalanches.The presence of ice significantly increases mobility due to lubrication and frictional melting.In the disaster event of September 10,2020,the maximum flow velocity and thickness reached 40 m/s and 43 m,respectively.Furthermore,continuous deformation of the Zelongnong glacier moraine was observed,with maximum cumulative deformations of 44.68 m in the distance direction and 25.96 m in the azimuth direction from March 25,2022,to August 25,2022.In the future,the risk of rock-ice avalanches in the Eastern Himalayan Syntaxis region will remain extremely high,necessitating a focus on early warning and risk mitigation strategies for such basin disasters.展开更多
On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the ef...On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.展开更多
Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units....Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units.The mechanical seal model is simplified by using periodic boundary conditions and numerical calculations are carried out based on the Zwart-Gerber-Belamri cavitation model.UDF(User Define Function)programs such as structural dynamics equations,alternating load equations,and pressure disturbance equations are embedded in numerical calculations,and the dynamic response characteristics of mechanical seal are studied using layered dynamic mesh technology.The results show that when the pressure disturbance occurs at the inlet,as the amplitude and period of the disturbance increase,the film thickness gradually decreases.And the fundamental reason for the hysteresis of the film thickness change is that the pressure in the high-pressure area cannot be restored in a timely manner.The maximum value of leakage and the minimum value of axial velocity are independent of the disturbance period and determined by the disturbance amplitude.The mutual interference between enhanced waves does not have a significant impact on the film thickness,while the front wave in the attenuated wave has a promoting effect on the subsequent film thickness changes,and the fluctuation of the liquid film cavitation rate and axial velocity under the attenuated wave condition deviates from the initial values.Compared with pressure disturbance conditions,alternating load conditions have a more significant impact on film thickness and leakage.During actual operation,it is necessary to avoid alternating load conditions in multiphase pump mechanical seals.展开更多
This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node...This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.展开更多
This study considers a superconducting electrodynamic maglev train of MLX01 type.The characteristics of the electromagnetic spring coefficient of a single bogie under different magnetomotive force(MF) of the supercond...This study considers a superconducting electrodynamic maglev train of MLX01 type.The characteristics of the electromagnetic spring coefficient of a single bogie under different magnetomotive force(MF) of the superconducting coil and standard air gap(Sag) were explored.In view of the small electromagnetic damping,a passive damping control strategy and an active damping control strategy were designed to increase the electromagnetic damping force between the superconducting coil and ground coil.Combined with the coupling numerical model of a single bogie,the vibration characteristics of the bogie in different directions with different damping control strategies were studied when the Sag and MF were fixed.The results can provide important theoretical support for stable operation control of maglev trains.展开更多
In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spat...In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.展开更多
The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial fo...The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system.展开更多
Since the Dongfeng-2 missile, full-vehicle modal testing has been established as an indispensable part of the development and testing of rocket and missile models. However, as rockets have been developed larger, the c...Since the Dongfeng-2 missile, full-vehicle modal testing has been established as an indispensable part of the development and testing of rocket and missile models. However, as rockets have been developed larger, the cost and duration of such tests have significantly increased, magnifying their impact on model development. This article follows the process of the modal testing practice of the Gravity-1 rocket, reviewing and summarizing the design process of the rocket's dynamic characteristics. Initially, the article introduces common modeling techniques for launch rockets, including the mass-beam model and the hybrid element model. It then discusses the relationship between the structural dynamics model of the launch rocket and modal testing, aiming to reduce testing costs through refined structural dynamics modeling methods. Subsequently, the article describes the dynamic characteristics design process of the Gravity-1 carrier rocket, categorizes structural parameters, and studies how the selection of structural parameters affects the predicted dynamic characteristics of the rocket. Finally, it elaborates on the design of the modal testing scheme and the dynamic characteristics design based on the test data.展开更多
The dynamics model of the transmission system of the internal grinder is established on the bases of Riccati transfer matrix. The dynamic characteristics of the internal grinder are obtained by analyzing the relations...The dynamics model of the transmission system of the internal grinder is established on the bases of Riccati transfer matrix. The dynamic characteristics of the internal grinder are obtained by analyzing the relationship between dynamic modal flexibility and modal flexibility, which is used to find out the dangerous model of the transmission system and its weak areas. Then design parameters of weak areas are modified, the new one from the old structure is put forward, and the dynamic characteristics of new ...展开更多
Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the wes...Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion.展开更多
The computational fluid dynamics (CFD) method is used to investigate the aerodynamic characteristics of the seat/occupant with windblast protection devices. The upwind Osher scheme is used for the spatial discretisa...The computational fluid dynamics (CFD) method is used to investigate the aerodynamic characteristics of the seat/occupant with windblast protection devices. The upwind Osher scheme is used for the spatial discretisation. The detached-eddy simulation (DES) based on the Spalart-Allmaras one-equation turbulence model is ap- plied to the detached viscous flow simulation behind the seat/occupant, with Mach numbers 0.6 and 1.2 at attack angles between --10 and 30°, and at two sideslip angles of 0 and 15°, respectively. The aerodynamic characteristics of seat/occupants with and without windblast protection devices are calculated in cases of the freestream Mach numbers 0. 8 and 1.6, attack angles from 5 to 30°, and three sideslip angles of 0, --20 and --50°, respectively. Results show that simulation results agree well with experimental data. And the occupant is efficiently protected by windblast protection devices.展开更多
In cold regions,the dynamic compressive strength(DCS)of rock damaged by freeze-thaw weathering significantly influences the stability of rock engineering.Nevertheless,testing the dynamic strength under freeze-thaw wea...In cold regions,the dynamic compressive strength(DCS)of rock damaged by freeze-thaw weathering significantly influences the stability of rock engineering.Nevertheless,testing the dynamic strength under freeze-thaw weathering conditions is often both time-consuming and expensive.Therefore,this study considers the effect of characteristic impedance on DCS and aims to quickly determine the DCS of frozen-thawed rocks through the application of machine-learning techniques.Initially,a database of DCS for frozen-thawed rocks,comprising 216 rock specimens,was compiled.Three external load parameters(freeze-thaw cycle number,confining pressure,and impact pressure)and two rock parameters(characteristic impedance and porosity)were selected as input variables,with DCS as the predicted target.This research optimized the kernel scale,penalty factor,and insensitive loss coefficient of the support vector regression(SVR)model using five swarm intelligent optimization algorithms,leading to the development of five hybrid models.In addition,a statistical DCS prediction equation using multiple linear regression techniques was developed.The performance of the prediction models was comprehensively evaluated using two error indexes and two trend indexes.A sensitivity analysis based on the cosine amplitude method has also been conducted.The results demonstrate that the proposed hybrid SVR-based models consistently provided accurate DCS predictions.Among these models,the SVR model optimized with the chameleon swarm algorithm exhibited the best performance,with metrics indicating its effectiveness,including root mean square error(RMSE)﹦3.9675,mean absolute error(MAE)﹦2.9673,coefficient of determination(R^(2))﹦0.98631,and variance accounted for(VAF)﹦98.634.This suggests that the chameleon swarm algorithm yielded the most optimal results for enhancing SVR models.Notably,impact pressure and characteristic impedance emerged as the two most influential parameters in DCS prediction.This research is anticipated to serve as a reliable reference for estimating the DCS of rocks subjected to freeze-thaw weathering.展开更多
During the operation of magnetic liquid double suspension bearing(MLDSB),due to rotor resonance,assembly error and other factor,the vibration amplitude of the rotor in resonance state exceeds the original design clear...During the operation of magnetic liquid double suspension bearing(MLDSB),due to rotor resonance,assembly error and other factor,the vibration amplitude of the rotor in resonance state exceeds the original design clearance,resulting in the collision damage between the rotor and the stator,the rotor and the casing.This paper presents a method to simulate the influence of different factors on the dynamic characteristics of 5 degrees of freedom(DOF)rotor based on the dynamic model of MLDSB.Firstly,according to the second Lagrange equation,the dynamic equation of 5 DOF rotor is derived,and the mathematical model is established.Then,based on 5 DOF rotor dynamic equation,the rotor transient dynamic equation under collision state is obtained,and the rotor transient collision dynamic simulation model is established.Finally,the key influencing factors of rotor dynamic characteristics are extracted,and the influence mapping relationship of rotor displacement,axis locus and stress distribution under different factors is simulated by using ANSYS Workbench software.The experimental results show that this method can effectively reflect the influence of various factors on the dynamic characteristics of the rotor.This method can provide theoretical reference for the design and control of MLDSB.展开更多
A dynamics model of the self-aligning ball bearing is proposed based on the Jones-Harris method (JHM), and a computer program is developed to solve the equations by using the Newton-Raphson method. A parametric anal...A dynamics model of the self-aligning ball bearing is proposed based on the Jones-Harris method (JHM), and a computer program is developed to solve the equations by using the Newton-Raphson method. A parametric analysis of the centrifugal force and the gyroscopic moment, the contact loads, the contact angles, the radial deformation and the radial stiffness is carried out. The analytical results show that the applied loads and the rotational speed are two main factors that can influence the distributions of the contact loads and values of the contact angles. The centrifugal force and the gyroscopic moment increase with the increase in the rotational speed, resulting in the decrease of the inner raceway contact load and the increase of the outer raceway contact load. The outer raceway contact angle increases under the centrifugal force; on the contrary, the inner raceway contact angle decreases. Furthermore, the differences between the inner and the outer contact angles increase with the increase in the rotational speed. The higher rotational speed results in the decrease in radial stiffness for the self-aligning ball bearing, and the raceway curvature coefficient, to some extent, also influences the radial stiffness.展开更多
The oil film thickness of oil hydrostatic guide with constant pressure supply based on capillary restrictor is greatly affected by load, and this kind of hydrostatic guide is usually applied to the machine tools with ...The oil film thickness of oil hydrostatic guide with constant pressure supply based on capillary restrictor is greatly affected by load, and this kind of hydrostatic guide is usually applied to the machine tools with moderate load. The static and dynamic characteristics of the guide have been studied by using some theoretical, numerical and experimental approaches, and some methods and measures have been proposed to improve its performances. The hydrostatic guide based on progressive mengen(PM) flow controller is especially suitable for the heavy numerical control(NC) machine tools. However, few literatures about the research on the static and dynamic characteristics of the hydrostatic guides based on PM flow controller are reported. In this paper, the formulae are derived for analyzing the static and dynamic characteristics of hydrostatic guides with rectangle pockets and PM flow controller according to the theory of hydrostatic bearing. On the basis of the analysis of hydrostatic bearing with circular pocket, some equations are derived for solving the static pressure, volume pressure and squeezing pressure which influence the dynamic characteristics of hydrostatic guides with rectangle pocket. The function and the influencing factors of three pressures are clarified. The formulae of amplitude-frequency characteristics and dynamic stiffness of the hydrostatic guide system are derived. With the help of software MATLAB, programs are coded with C++ language to simulate numerically the static and dynamic characteristics of the hydrostatic guide based on PM flow controller. The simulation results indicate that the sensitive oil volume between the outlet of the PM flow controller and the guide pocket has the greatest influence on the characteristics of the guide, and it should be reduced as small as possible when the field working condition is met. Choosing the oil with a greater viscosity is also helpful in improving the dynamic performance of hydrostatic guides. The research work has instructing significance for analyzing and designing the guide with PM flow controller.展开更多
In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficu...In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equations were developed for describing parachute opening process, and an iterative coupling solving strategy incorpo- rating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were carried out for canopy geometry, time-dependent pressure difference between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experiments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical predictions were found in good agreement with the experimental results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of significance to the understanding of the mechanics of parachute inflation process.展开更多
This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analyti...This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method(DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and effi ciency are verifi ed in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the infl uences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coeffi cient. Results show that the modal damping ratio is signifi cantly infl uenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.展开更多
Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing syste...Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing system with coupled faults is presented. The dynamic responses of the rotor-bearing system are obtained by using the rotor dynamics theory and the modern nonlinear dynamics theory in connection with the continuation-shooting algorithm(commonly used for obtaining a periodic solution for a nonlinear system) for a range of rub-impact clearances and crack depths. The stability and Hopf instability of the periodic motion of the rotor-bearing system with coupled faults are analyzed by using the procedure described. The results indicate that the finite element method is an effective way for determining the dynamic responses of such complex rotor-bearing systems. Further for a rotor system with rub-impact and crack faults, the influences of the clearances are significantly different for different rub-impact stiffness. On the contrary, the influence of crack depths is rather small. The instability speeds of the rotor-bearing system increase due to the presence of the crack fault. The results obtained using the new finite element model, presented for computation and analysis of dynamic responses of the rotor-bearing systems with coupled faults, are in accordance with measurements in experiment. The formulations given can be used for diagnosis of faults, vibration control, and safe and stable operations of real rotor-bearing systems.展开更多
The inner and outer oil film dynamic characteristic coefficients of floating ring bearings(FRBs) change due to the manufacturing tolerance of the floating ring, journal and intermediate, which leads to high-speed tu...The inner and outer oil film dynamic characteristic coefficients of floating ring bearings(FRBs) change due to the manufacturing tolerance of the floating ring, journal and intermediate, which leads to high-speed turbocharger's vibration too large and even causes nonlinear vibration accident. However, the investigation of floating ring bearing manufacturing tolerance clearance on the rotordynamic characteristics is less at present. In order to study the influence law of inner and outer clearance on turbocharger vibration, the rotor dynamic motion equations of turbocharger supported in FRBs are derived by analyzing the size relations between floating ring, journal and intermediate for the inner and outer oil film clearances, the time transient response analysis for combination of FRBs clearance are developed. A realistic turbocharger is taken as a research object, the FE model of the turbocharger with FRBs is modeled. Under the conditions of four kinds of limit state bearing clearances for inner and outer oil film, the nonlinear transient analyses are performed based on the established FE dynamic models of the nonlinear rotor-FRBs system applied incentive combinations of gravity and unbalance force, respectively. From the waterfall, the simulation results show that the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different under the four kinds of bearing manufacturing tolerance limit clearances, and fractional frequency does not appear in the turbocharger and the amplitude is minimum under the ODMin/IDMax bearing manufacturing tolerance clearances. The turbocharger vibration is reduced by controlling the manufacturing tolerance clearance combinations of FRBs, which is helpful for the dynamic design and production-manufacturing of high-speed turbocharger.展开更多
基金supported by the National Natural Science Foundation of China under Grants Nos.52165013 and 51565021.
文摘The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.
基金granted by the National Natural Science Foundation of China(Grant Nos.U2244227 and U2244226)the National Key R&D Program of China(Grant No.2022YFC3004301)China Geological Survey Project(Grant No.DD20230538)。
文摘Rock-ice avalanches have frequently occurred in the Eastern Himalayan Syntaxis region due to climate change and active tectonic movements.These events commonly trigger catastrophic geohazard chains,including debris flows,river blockages,and floods.This study focuses on the Zelongnong Basin,analyzing the geomorphic and dynamic characteristics of high-altitude disasters.The basin exhibits typical vertical zonation,with disaster sources initiating at elevations exceeding 4000 m and runout distances reaching up to 10 km.The disaster chain movement involves complex dynamic effects,including impact disintegration,soil-rock mixture arching,dynamic erosion,and debris deposition,enhancing understanding of the flow behavior and dynamic characteristics of rock-ice avalanches.The presence of ice significantly increases mobility due to lubrication and frictional melting.In the disaster event of September 10,2020,the maximum flow velocity and thickness reached 40 m/s and 43 m,respectively.Furthermore,continuous deformation of the Zelongnong glacier moraine was observed,with maximum cumulative deformations of 44.68 m in the distance direction and 25.96 m in the azimuth direction from March 25,2022,to August 25,2022.In the future,the risk of rock-ice avalanches in the Eastern Himalayan Syntaxis region will remain extremely high,necessitating a focus on early warning and risk mitigation strategies for such basin disasters.
基金supported by the National Natural Science Foundation of China(No.32002442)the National Key R&D Program(No.2019YFD0902101).
文摘On the basis of computational fluid dynamics,the flow field characteristics of multi-trophic artificial reefs,including the flow field distribution features of a single reef under three different velocities and the effect of spacing between reefs on flow scale and the flow state,were analyzed.Results indicate upwelling,slow flow,and eddy around a single reef.Maximum velocity,height,and volume of upwelling in front of a single reef were positively correlated with inflow velocity.The length and volume of slow flow increased with the increase in inflow velocity.Eddies were present both inside and backward,and vorticity was positively correlated with inflow velocity.Space between reefs had a minor influence on the maximum velocity and height of upwelling.With the increase in space from 0.5 L to 1.5 L(L is the reef lehgth),the length of slow flow in the front and back of the combined reefs increased slightly.When the space was 2.0 L,the length of the slow flow decreased.In four different spaces,eddies were present inside and at the back of each reef.The maximum vorticity was negatively correlated with space from 0.5 L to 1.5 L,but under 2.0 L space,the maximum vorticity was close to the vorticity of a single reef under the same inflow velocity.
基金the support of the National Natural Science Foundation of China(52372368)。
文摘Slug flow or high GVF(Gas Volume Fraction)conditions can cause pressure disturbance waves and alternating loads at the boundary of mechanical seals for multiphase pumps,endangering the safety of multiphase pump units.The mechanical seal model is simplified by using periodic boundary conditions and numerical calculations are carried out based on the Zwart-Gerber-Belamri cavitation model.UDF(User Define Function)programs such as structural dynamics equations,alternating load equations,and pressure disturbance equations are embedded in numerical calculations,and the dynamic response characteristics of mechanical seal are studied using layered dynamic mesh technology.The results show that when the pressure disturbance occurs at the inlet,as the amplitude and period of the disturbance increase,the film thickness gradually decreases.And the fundamental reason for the hysteresis of the film thickness change is that the pressure in the high-pressure area cannot be restored in a timely manner.The maximum value of leakage and the minimum value of axial velocity are independent of the disturbance period and determined by the disturbance amplitude.The mutual interference between enhanced waves does not have a significant impact on the film thickness,while the front wave in the attenuated wave has a promoting effect on the subsequent film thickness changes,and the fluctuation of the liquid film cavitation rate and axial velocity under the attenuated wave condition deviates from the initial values.Compared with pressure disturbance conditions,alternating load conditions have a more significant impact on film thickness and leakage.During actual operation,it is necessary to avoid alternating load conditions in multiphase pump mechanical seals.
基金Anhui Provincial Natural Science Foundation(2308085QD124)Anhui Province University Natural Science Research Project(GrantNo.2023AH050918)The University Outstanding Youth Talent Support Program of Anhui Province.
文摘This study proposes an effective method to enhance the accuracy of the Differential Quadrature Method(DQM)for calculating the dynamic characteristics of functionally graded beams by improving the form of discrete node distribution.Firstly,based on the first-order shear deformation theory,the governing equation of free vibration of a functionally graded beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam axial displacement,transverse displacement,and cross-sectional rotation angle by considering the effects of shear deformation and rotational inertia of the beam cross-section.Then,ignoring the shear deformation of the beam section and only considering the effect of the rotational inertia of the section,the governing equation of the beam is transformed into the eigenvalue problem of ordinary differential equations with respect to beam transverse displacement.Based on the differential quadrature method theory,the eigenvalue problem of ordinary differential equations is transformed into the eigenvalue problem of standard generalized algebraic equations.Finally,the first several natural frequencies of the beam can be calculated.The feasibility and accuracy of the improved DQM are verified using the finite element method(FEM)and combined with the results of relevant literature.
文摘This study considers a superconducting electrodynamic maglev train of MLX01 type.The characteristics of the electromagnetic spring coefficient of a single bogie under different magnetomotive force(MF) of the superconducting coil and standard air gap(Sag) were explored.In view of the small electromagnetic damping,a passive damping control strategy and an active damping control strategy were designed to increase the electromagnetic damping force between the superconducting coil and ground coil.Combined with the coupling numerical model of a single bogie,the vibration characteristics of the bogie in different directions with different damping control strategies were studied when the Sag and MF were fixed.The results can provide important theoretical support for stable operation control of maglev trains.
基金National Natural Science Foundation of China(11572001,51478004)2021 Undergraduate Course Ideological and Political Demonstration Course-Theoretical Mechanics(108051360022XN569)2022 Great Innovation Project-Frame Bridge Structural Engineering Research(108051360022XN388)。
文摘In order to investigate the effect of vehicle-bridge coupling on the dynamic characteristics of the bridge,a steel-concrete composite beam suspension bridge is taken as the research object,and a three-dimensional spatial model of the bridge and a biaxial vehicle model of the vehicle are established,and then a vehicle-bridge coupling vibration system is constructed on the basis of the Nemak-βmethod,and the impact coefficients of each part of the bridge are obtained under different bridge deck unevenness and vehicle speed.The simulation results show that the bridge deck unevenness has the greatest influence on the vibration response of the bridge,and the bridge impact coefficient increases along with the increase in the level of bridge deck unevenness,and the impact coefficient of the main longitudinal girder and the secondary longitudinal girder achieves the maximum value when the level 4 unevenness is 0.328 and 0.314,respectively;when the vehicle speed is increased,the vibration response of the bridge increases and then decreases,and the impact coefficient of the bridge in the middle of the bridge at a speed of 60 km/h achieves the maximum value of 0.192.
文摘The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system.
文摘Since the Dongfeng-2 missile, full-vehicle modal testing has been established as an indispensable part of the development and testing of rocket and missile models. However, as rockets have been developed larger, the cost and duration of such tests have significantly increased, magnifying their impact on model development. This article follows the process of the modal testing practice of the Gravity-1 rocket, reviewing and summarizing the design process of the rocket's dynamic characteristics. Initially, the article introduces common modeling techniques for launch rockets, including the mass-beam model and the hybrid element model. It then discusses the relationship between the structural dynamics model of the launch rocket and modal testing, aiming to reduce testing costs through refined structural dynamics modeling methods. Subsequently, the article describes the dynamic characteristics design process of the Gravity-1 carrier rocket, categorizes structural parameters, and studies how the selection of structural parameters affects the predicted dynamic characteristics of the rocket. Finally, it elaborates on the design of the modal testing scheme and the dynamic characteristics design based on the test data.
文摘The dynamics model of the transmission system of the internal grinder is established on the bases of Riccati transfer matrix. The dynamic characteristics of the internal grinder are obtained by analyzing the relationship between dynamic modal flexibility and modal flexibility, which is used to find out the dangerous model of the transmission system and its weak areas. Then design parameters of weak areas are modified, the new one from the old structure is put forward, and the dynamic characteristics of new ...
基金This paper was supported by Chinese 863 Plan Water-Saving Agriculture (2002AA2Z4321),the Key Knowledge Innovation Project (SCXZY0103) and The Tenth-five Plan of Liaoning Province (2001212001).
文摘Robinia pseudoacacia stands act as a typical ecological protection forest in hilly semi-arid area of China. Two fields of surface runoff were separately set up in R. pseudoacacia stand and its clearcut area in the western Liaoning Province (1850-12225 E, 4024-4234 N) for measuring the characteristics of runoff and sediment as well as soil moisture dynamics. Contractive analysis of the two land types showed that there existed a significant difference in volumes of runoff and sediment between the sites of R. pseudoacacia stand and its clearcut area. The runoff volume and sediment volume in clearcut area were much bigger than those in R. pseudoacacia stand, with an increase amount of 40%-177% for runoff and 180%-400% for sediment. Hydrograph of surface runoff of typical rainfall showed that the peak value of runoff in R. pseudoacacia stand was decreased by 1.0-2.5?0-3m3s-1 compared with that in its clearcut area, and the occurring time of peak value of runoff in R. pseudoacacia stand was 10-20 min later than that in its clearcut area. Harmonic analysis of soil moisture dynamics indicated that the soil moisture in R. pseudoacacia stand was 2.3 % higher than that in clearcut area, and the soil moisture both in R. pseudoacacia stand and its clearcut area could be divided into dry season and humid season and varied periodically with annual rainfall precipitation. It was concluded that R. pseudoacacia stand plays a very important role in storing water, increasing soil moisture, and reducing surface runoff and soil erosion.
基金Supported by the Aeronautical Science Foundation of China(2008ZC52039)~~
文摘The computational fluid dynamics (CFD) method is used to investigate the aerodynamic characteristics of the seat/occupant with windblast protection devices. The upwind Osher scheme is used for the spatial discretisation. The detached-eddy simulation (DES) based on the Spalart-Allmaras one-equation turbulence model is ap- plied to the detached viscous flow simulation behind the seat/occupant, with Mach numbers 0.6 and 1.2 at attack angles between --10 and 30°, and at two sideslip angles of 0 and 15°, respectively. The aerodynamic characteristics of seat/occupants with and without windblast protection devices are calculated in cases of the freestream Mach numbers 0. 8 and 1.6, attack angles from 5 to 30°, and three sideslip angles of 0, --20 and --50°, respectively. Results show that simulation results agree well with experimental data. And the occupant is efficiently protected by windblast protection devices.
基金supported by the National Natural Science Foundation of China(Grant No.42072309)the Knowledge Innovation Program of Wuhan-Basic Research(Grant No.2022020801010199)the Fundamental Research Funds for National University,China University of Geosciences(Wuhan)(Grant No.CUGDCJJ202217).
文摘In cold regions,the dynamic compressive strength(DCS)of rock damaged by freeze-thaw weathering significantly influences the stability of rock engineering.Nevertheless,testing the dynamic strength under freeze-thaw weathering conditions is often both time-consuming and expensive.Therefore,this study considers the effect of characteristic impedance on DCS and aims to quickly determine the DCS of frozen-thawed rocks through the application of machine-learning techniques.Initially,a database of DCS for frozen-thawed rocks,comprising 216 rock specimens,was compiled.Three external load parameters(freeze-thaw cycle number,confining pressure,and impact pressure)and two rock parameters(characteristic impedance and porosity)were selected as input variables,with DCS as the predicted target.This research optimized the kernel scale,penalty factor,and insensitive loss coefficient of the support vector regression(SVR)model using five swarm intelligent optimization algorithms,leading to the development of five hybrid models.In addition,a statistical DCS prediction equation using multiple linear regression techniques was developed.The performance of the prediction models was comprehensively evaluated using two error indexes and two trend indexes.A sensitivity analysis based on the cosine amplitude method has also been conducted.The results demonstrate that the proposed hybrid SVR-based models consistently provided accurate DCS predictions.Among these models,the SVR model optimized with the chameleon swarm algorithm exhibited the best performance,with metrics indicating its effectiveness,including root mean square error(RMSE)﹦3.9675,mean absolute error(MAE)﹦2.9673,coefficient of determination(R^(2))﹦0.98631,and variance accounted for(VAF)﹦98.634.This suggests that the chameleon swarm algorithm yielded the most optimal results for enhancing SVR models.Notably,impact pressure and characteristic impedance emerged as the two most influential parameters in DCS prediction.This research is anticipated to serve as a reliable reference for estimating the DCS of rocks subjected to freeze-thaw weathering.
基金Supported by the National Natural Science Foundation of China(No.52075468)。
文摘During the operation of magnetic liquid double suspension bearing(MLDSB),due to rotor resonance,assembly error and other factor,the vibration amplitude of the rotor in resonance state exceeds the original design clearance,resulting in the collision damage between the rotor and the stator,the rotor and the casing.This paper presents a method to simulate the influence of different factors on the dynamic characteristics of 5 degrees of freedom(DOF)rotor based on the dynamic model of MLDSB.Firstly,according to the second Lagrange equation,the dynamic equation of 5 DOF rotor is derived,and the mathematical model is established.Then,based on 5 DOF rotor dynamic equation,the rotor transient dynamic equation under collision state is obtained,and the rotor transient collision dynamic simulation model is established.Finally,the key influencing factors of rotor dynamic characteristics are extracted,and the influence mapping relationship of rotor displacement,axis locus and stress distribution under different factors is simulated by using ANSYS Workbench software.The experimental results show that this method can effectively reflect the influence of various factors on the dynamic characteristics of the rotor.This method can provide theoretical reference for the design and control of MLDSB.
基金The National Natural Science Foundation of China (No.5047507, 50775036)the High Technology Research Program of Jiangsu Province (No.BG2006035)the Natural Science Foundation of JiangsuProvince (No.BK2009612)
文摘A dynamics model of the self-aligning ball bearing is proposed based on the Jones-Harris method (JHM), and a computer program is developed to solve the equations by using the Newton-Raphson method. A parametric analysis of the centrifugal force and the gyroscopic moment, the contact loads, the contact angles, the radial deformation and the radial stiffness is carried out. The analytical results show that the applied loads and the rotational speed are two main factors that can influence the distributions of the contact loads and values of the contact angles. The centrifugal force and the gyroscopic moment increase with the increase in the rotational speed, resulting in the decrease of the inner raceway contact load and the increase of the outer raceway contact load. The outer raceway contact angle increases under the centrifugal force; on the contrary, the inner raceway contact angle decreases. Furthermore, the differences between the inner and the outer contact angles increase with the increase in the rotational speed. The higher rotational speed results in the decrease in radial stiffness for the self-aligning ball bearing, and the raceway curvature coefficient, to some extent, also influences the radial stiffness.
文摘The oil film thickness of oil hydrostatic guide with constant pressure supply based on capillary restrictor is greatly affected by load, and this kind of hydrostatic guide is usually applied to the machine tools with moderate load. The static and dynamic characteristics of the guide have been studied by using some theoretical, numerical and experimental approaches, and some methods and measures have been proposed to improve its performances. The hydrostatic guide based on progressive mengen(PM) flow controller is especially suitable for the heavy numerical control(NC) machine tools. However, few literatures about the research on the static and dynamic characteristics of the hydrostatic guides based on PM flow controller are reported. In this paper, the formulae are derived for analyzing the static and dynamic characteristics of hydrostatic guides with rectangle pockets and PM flow controller according to the theory of hydrostatic bearing. On the basis of the analysis of hydrostatic bearing with circular pocket, some equations are derived for solving the static pressure, volume pressure and squeezing pressure which influence the dynamic characteristics of hydrostatic guides with rectangle pocket. The function and the influencing factors of three pressures are clarified. The formulae of amplitude-frequency characteristics and dynamic stiffness of the hydrostatic guide system are derived. With the help of software MATLAB, programs are coded with C++ language to simulate numerically the static and dynamic characteristics of the hydrostatic guide based on PM flow controller. The simulation results indicate that the sensitive oil volume between the outlet of the PM flow controller and the guide pocket has the greatest influence on the characteristics of the guide, and it should be reduced as small as possible when the field working condition is met. Choosing the oil with a greater viscosity is also helpful in improving the dynamic performance of hydrostatic guides. The research work has instructing significance for analyzing and designing the guide with PM flow controller.
基金the National Natural Science Foundation of China(10377006).
文摘In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equations were developed for describing parachute opening process, and an iterative coupling solving strategy incorpo- rating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were carried out for canopy geometry, time-dependent pressure difference between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experiments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical predictions were found in good agreement with the experimental results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of significance to the understanding of the mechanics of parachute inflation process.
基金973 Program under Grant under Grant No.2012CB723304It was partially supported by the Major Research Plan of the National Natural Science Foundation of China under Grant No.91315301-07+2 种基金in part by Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT13057the Ministry of Education Program for New Century Excellent Talents in University under Grant No.NCET-11-0914the Guangzhou Ram Scholar Program Grant No.10A032D
文摘This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method(DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and effi ciency are verifi ed in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the infl uences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coeffi cient. Results show that the modal damping ratio is signifi cantly infl uenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2012CB026000)
文摘Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing system with coupled faults is presented. The dynamic responses of the rotor-bearing system are obtained by using the rotor dynamics theory and the modern nonlinear dynamics theory in connection with the continuation-shooting algorithm(commonly used for obtaining a periodic solution for a nonlinear system) for a range of rub-impact clearances and crack depths. The stability and Hopf instability of the periodic motion of the rotor-bearing system with coupled faults are analyzed by using the procedure described. The results indicate that the finite element method is an effective way for determining the dynamic responses of such complex rotor-bearing systems. Further for a rotor system with rub-impact and crack faults, the influences of the clearances are significantly different for different rub-impact stiffness. On the contrary, the influence of crack depths is rather small. The instability speeds of the rotor-bearing system increase due to the presence of the crack fault. The results obtained using the new finite element model, presented for computation and analysis of dynamic responses of the rotor-bearing systems with coupled faults, are in accordance with measurements in experiment. The formulations given can be used for diagnosis of faults, vibration control, and safe and stable operations of real rotor-bearing systems.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205121,51375162)Scientific Research Foundation of Hunan Provincial Education Department of China(Grant No.13A023)Postgraduate Innovation Foundation of Hunan University of Science and Technology,China(Grant No.S140020)
文摘The inner and outer oil film dynamic characteristic coefficients of floating ring bearings(FRBs) change due to the manufacturing tolerance of the floating ring, journal and intermediate, which leads to high-speed turbocharger's vibration too large and even causes nonlinear vibration accident. However, the investigation of floating ring bearing manufacturing tolerance clearance on the rotordynamic characteristics is less at present. In order to study the influence law of inner and outer clearance on turbocharger vibration, the rotor dynamic motion equations of turbocharger supported in FRBs are derived by analyzing the size relations between floating ring, journal and intermediate for the inner and outer oil film clearances, the time transient response analysis for combination of FRBs clearance are developed. A realistic turbocharger is taken as a research object, the FE model of the turbocharger with FRBs is modeled. Under the conditions of four kinds of limit state bearing clearances for inner and outer oil film, the nonlinear transient analyses are performed based on the established FE dynamic models of the nonlinear rotor-FRBs system applied incentive combinations of gravity and unbalance force, respectively. From the waterfall, the simulation results show that the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different under the four kinds of bearing manufacturing tolerance limit clearances, and fractional frequency does not appear in the turbocharger and the amplitude is minimum under the ODMin/IDMax bearing manufacturing tolerance clearances. The turbocharger vibration is reduced by controlling the manufacturing tolerance clearance combinations of FRBs, which is helpful for the dynamic design and production-manufacturing of high-speed turbocharger.