航空发动机转子系统通常在支承处设置挤压油膜阻尼器(squeeze film damper,SFD)来实现系统减振设计,与定心SFD相比,非定心SFD结构简单紧凑,减振效果良好,但是具有更强的非线性特征,动力特性更为复杂。以某航空发动机动力涡轮转子为研究...航空发动机转子系统通常在支承处设置挤压油膜阻尼器(squeeze film damper,SFD)来实现系统减振设计,与定心SFD相比,非定心SFD结构简单紧凑,减振效果良好,但是具有更强的非线性特征,动力特性更为复杂。以某航空发动机动力涡轮转子为研究对象,建立了多支点高速柔性转子-非定心SFD系统非线性动力学模型,考虑了非定心SFD静偏心的影响,采用数值方法求解转子系统响应,结合系统不平衡响应特征、分岔图、庞家莱截面、频谱等,开展了系统非线性动力学特性研究,并通过了转子试验验证。研究结果表明,非定心SFD油膜间隙较大时,转子系统存在较强的非线性运动,频率成分丰富,减小油膜间隙能够使系统在跨临界后为单周期运动,降低系统的非线性不平衡响应;但过小的油膜间隙将导致转子系统峰值响应和对应的转速显著增大,转子可工作转速范围变小,合理的油膜间隙可以兼顾非线性振动响应和峰值转速较小,实现转子系统在大转速范围内长时间运行。展开更多
文摘航空发动机转子系统通常在支承处设置挤压油膜阻尼器(squeeze film damper,SFD)来实现系统减振设计,与定心SFD相比,非定心SFD结构简单紧凑,减振效果良好,但是具有更强的非线性特征,动力特性更为复杂。以某航空发动机动力涡轮转子为研究对象,建立了多支点高速柔性转子-非定心SFD系统非线性动力学模型,考虑了非定心SFD静偏心的影响,采用数值方法求解转子系统响应,结合系统不平衡响应特征、分岔图、庞家莱截面、频谱等,开展了系统非线性动力学特性研究,并通过了转子试验验证。研究结果表明,非定心SFD油膜间隙较大时,转子系统存在较强的非线性运动,频率成分丰富,减小油膜间隙能够使系统在跨临界后为单周期运动,降低系统的非线性不平衡响应;但过小的油膜间隙将导致转子系统峰值响应和对应的转速显著增大,转子可工作转速范围变小,合理的油膜间隙可以兼顾非线性振动响应和峰值转速较小,实现转子系统在大转速范围内长时间运行。