期刊文献+
共找到50,803篇文章
< 1 2 250 >
每页显示 20 50 100
Seismic control of multi-degrees-of-freedom structures by vertical mass isolation method using MR dampers
1
作者 Mohamad Shahrokh Abdi Masoud Nekooei Mohammad-Ali Jafari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期503-510,共8页
Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is loc... Vertical mass isolation(VMI)is one of the novel methods for the seismic control of structures.In this method,the entire structure is assumed to consist of two mass and stiffness subsystems,and an isolated layer is located among them.In this study,the magnetorheological damper in three modes:passive-off,passive-on,and semi-active mode with variable voltage between zero and 9 volts was used as an isolated layer between two subsystems.Multi-degrees-of-freedom structures with 5,10,and 15 floors in two dimensions were examined under 11 pairs of near field earthquakes.On each level,the displacement of MR dampers was taken into account.The responses of maximum displacement,maximum inter-story drift,and maximum base shear in controlled and uncontrolled buildings were compared to assess the suggested approach for seismic control of the structures.According to the results,the semi-active control method can reduce the response by more than 12%compared to the uncontrolled mode in terms of maximum displacement of the mass subsystem of the structures.This method can reduce more than 16%and 20%of the responses compared to the uncontrolled mode in terms of maximum inter-story drift and base shear of the structure,respectively. 展开更多
关键词 seismic control vertical mass isolation base shear magnetorheological damper semi-active control
下载PDF
Theoretical and Experimental Study on the Performance of Hermetic Diaphragm Squeeze Film Dampers for Gas-Lubricated Bearings
2
作者 Jianwei Wang Haoxi Zhang +3 位作者 Shaocun Han Hang Li Peng Wang Kai Feng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期151-169,共19页
Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearing... Low damping characteristics have always been a key sticking points in the development of gas bearings.The application of squeeze film dampers can significantly improve the damping performance of gas lubricated bearings.This paper proposed a novel hermetic diaphragm squeeze film damper(HDSFD)for oil-free turbomachinery supported by gas lubricated bearings.Several types of HDSFDs with symmetrical structure were proposed for good damping performance.By considering the compressibility of the damper fluid,based on hydraulic fluid mechanics theory,a dynamic model of HDSFDs under medium is proposed,which successfully reflects the frequency dependence of force coefficients.Based on the dynamic model,the effects of damper fluid viscosity,bulk modulus of damper fluid,thickness of damper fluid film and plunger thickness on the dynamic stiffness and damping of HDSFDs were analyzed.An experimental test rig was assembled and series of experimental studies on HDSFDs were conducted.The damper fluid transverse flow is added to the existing HDSFD concept,which aims to make the dynamic force coefficients independent of frequency.Although the force coefficient is still frequency dependent,the damping coefficient at high frequency excitation with damper fluid supply twice as that without damper fluid supply.The results serve as a benchmark for the calibration of analytical tools under development. 展开更多
关键词 Hermetic diaphragm squeeze film damper COMPRESSIBILITY Dynamic model Experimental studies
下载PDF
Development and Application of a Power Law Constitutive Model for Eddy Current Dampers
3
作者 Longteng Liang Zhouquan Feng +2 位作者 Hongyi Zhang Zhengqing Chen Changzhao Qian 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2403-2419,共17页
Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tot... Eddy current dampers (ECDs) have emerged as highly desirable solutions for vibration control due to theirexceptional damping performance and durability. However, the existing constitutive models present challenges tothe widespread implementation of ECD technology, and there is limited availability of finite element analysis (FEA)software capable of accurately modeling the behavior of ECDs. This study addresses these issues by developing anewconstitutivemodel that is both easily understandable and user-friendly for FEAsoftware. By utilizing numericalresults obtained from electromagnetic FEA, a novel power law constitutive model is proposed to capture thenonlinear behavior of ECDs. The effectiveness of the power law constitutive model is validated throughmechanicalproperty tests and numerical seismic analysis. Furthermore, a detailed description of the application process ofthe power law constitutive model in ANSYS FEA software is provided. To facilitate the preliminary design ofECDs, an analytical derivation of energy dissipation and parameter optimization for ECDs under harmonicmotionis performed. The results demonstrate that the power law constitutive model serves as a viable alternative forconducting dynamic analysis using FEA and optimizing parameters for ECDs. 展开更多
关键词 Eddy current damper constitutive model finite element analysis vibration control power law constitutive model
下载PDF
Application of computational fluid dynamics in design of viscous dampers-CFD modeling and full-scale dynamic testing 被引量:1
4
作者 Hassan Lak Seyed Mehdi Zahrai +1 位作者 Seyed Mohammad Mirhosseini Ehsanollah Zeighami 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第4期1065-1080,共16页
Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dam... Computational fluid dynamics(CFD)provides a powerful tool for investigating complicated fluid flows.This paper aims to study the applicability of CFD in the preliminary design of linear and nonlinear fluid viscous dampers.Two fluid viscous dampers were designed based on CFD models.The first device was a linear viscous damper with straight orifices.The second was a nonlinear viscous damper containing a one-way pressure-responsive valve inside its orifices.Both dampers were detailed based on CFD simulations,and their internal fluid flows were investigated.Full-scale specimens of both dampers were manufactured and tested under dynamic loads.According to the tests results,both dampers demonstrate stable cyclic behaviors,and as expected,the nonlinear damper generally tends to dissipate more energy compared to its linear counterpart.Good compatibility was achieved between the experimentally measured damper force-velocity curves and those estimated from CFD analyses.Using a thermography camera,a rise in temperature of the dampers was measured during the tests.It was found that output force of the manufactured devices was virtually independent of temperature even during long duration loadings.Accordingly,temperature dependence can be ignored in CFD models,because a reliable temperature compensator mechanism was used(or intended to be used)by the damper manufacturer. 展开更多
关键词 fluid viscous damper passive control dynamic testing energy dissipation device computational fluid dynamic THERMOGRAPHY
下载PDF
Variable stiffness tuned particle dampers for vibration control of cantilever boring bars
5
作者 Xiangying GUO Yunan ZHU +2 位作者 Zhong LUO Dongxing CAO Jihou YANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第12期2163-2186,共24页
This research proposes a novel type of variable stiffness tuned particle damper(TPD)for reducing vibrations in boring bars.The TPD integrates the developments of particle damping and dynamical vibration absorber,whose... This research proposes a novel type of variable stiffness tuned particle damper(TPD)for reducing vibrations in boring bars.The TPD integrates the developments of particle damping and dynamical vibration absorber,whose frequency tuning principle is established through an equivalent theoretical model.Based on the multiphase flow theory of gas-solid,it is effective to obtain the equivalent damping and stiffness of the particle damping.The dynamic equations of the coupled system,consisting of a boring bar with the TPD,are built by Hamilton’s principle.The vibration suppression of the TPD is assessed by calculating the amplitude responses of the boring bar both with and without the TPD by the Newmark-beta algorithm.Moreover,an improvement is proposed to the existing gas-solid flow theory,and a comparative analysis of introducing the stiffness term on the damping effect is presented.The parameters of the TPD are optimized by the genetic algorithm,and the results indicate that the optimized TPD effectively reduces the peak response of the boring bar system. 展开更多
关键词 PARTICLE tuned particle damper(TPD) variable stiffness vibration control
下载PDF
基于Damper的方向盘抖动问题优化设计
6
作者 葛峰 高中扩 +1 位作者 钱勇 王小飞 《汽车维修技师》 2024年第18期115-115,共1页
方向盘是顾客使用频次较高的零部件,受发动机等振源影响,在某些工况下方向盘会出现抖动等让顾客感到不适的问题,本文浅析了某车型方向盘高速抖动的原因,在现有方向盘结构上优化设计,增加Damper吸振器,有效解决了方向盘抖动问题,提升了... 方向盘是顾客使用频次较高的零部件,受发动机等振源影响,在某些工况下方向盘会出现抖动等让顾客感到不适的问题,本文浅析了某车型方向盘高速抖动的原因,在现有方向盘结构上优化设计,增加Damper吸振器,有效解决了方向盘抖动问题,提升了顾客舒适性。 展开更多
关键词 方向盘 抖动 damper吸振器 舒适性
下载PDF
Demonstrating grating-based phase-contrast imaging of laser-driven shock waves
7
作者 Leonard Wegert Stephan Schreiner +16 位作者 Constantin Rauch Bruno Albertazzi Paulina Bleuel Eric Frojdh Michel Koenig Veronika Ludwig Artem SMartynenko Pascal Meyer Aldo Mozzanica Michael Müller Paul Neumayer Markus Schneider Angelos Triantafyllidis Bernhard Zielbauer Gisela Anton Thilo Michel Stefan Funk 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第4期90-97,共8页
Single-shot X-ray phase-contrast imaging is used to take high-resolution images of laser-driven strong shock waves.Employing a two-grating Talbot interferometer,we successfully acquire standard absorption,differential... Single-shot X-ray phase-contrast imaging is used to take high-resolution images of laser-driven strong shock waves.Employing a two-grating Talbot interferometer,we successfully acquire standard absorption,differential phase-contrast,and dark-field images of the shocked target.Good agreement is demonstrated between experimental data and the results of two-dimensional radiation hydrodynamics simulations of the laser-plasma interaction.The main sources of image noise are identified through a thorough assessment of the interferometer’s performance.The acquired images demonstrate that grating-based phase-contrast imaging is a powerful diagnostic tool for high-energy-density science.In addition,we make a novel attempt at using the dark-field image as a signal modality of Talbot interferometry to identify the microstructure of a foam target. 展开更多
关键词 INTERACTION shock PHASE
下载PDF
Strong shock propagation for the finite-source circular blast in a confined domain
8
作者 Qihang MA Kaileong CHONG +1 位作者 Bofu WANG Quan ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1071-1084,共14页
The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary s... The circular explosion wave produced by the abrupt discharge of gas from a high-temperature heat source serves as a crucial model for addressing explosion phenomena in compressible flow.The reflection of the primary shock and its propagation within a confined domain are studied both theoretically and numerically in this research.Under the assumption of strong shock,the scaling law governing propagation of the main shock is proposed.The dimensionless frequency of reflected shock propagation is associated with the confined distance.The numerical simulation for the circular explosion problem in a confined domain is performed for validation.Under the influence of confinement,the principal shock wave systematically undergoes reflection within the domain until it weakens,leading to the non-monotonic attenuation of kinetic energy in the explosion fireball and periodic oscillations of the fireball volume with a certain frequency.The simulation results indicate that the frequency of kinetic energy attenuation and the volume oscillation of the explosive fireball align consistently with the scaling law. 展开更多
关键词 explosion CONFINEMENT main shock frequency
下载PDF
Dynamic convergent shock compression initiated by return current in high-intensity laser-solid interactions
9
作者 Long Yang Martin Rehwald +6 位作者 Thomas Kluge Alejandro LasoGarcia Toma Toncian Karl Zeil Ulrich Schramm Thomas E.Cowan Lingen Huang 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第4期40-53,共14页
We investigate the dynamics of convergent shock compression in solid cylindrical targets irradiated by an ultrafast relativistic laser pulse.Our particle-in-cell simulations and coupled hydrodynamic simulations reveal... We investigate the dynamics of convergent shock compression in solid cylindrical targets irradiated by an ultrafast relativistic laser pulse.Our particle-in-cell simulations and coupled hydrodynamic simulations reveal that the compression process is initiated by both magnetic pressure and surface ablation associated with a strong transient surface return current with density of the order of 10^(17) A/m^(2) and lifetime of 100 fs.The results show that the dominant compression mechanism is governed by the plasma β,i.e.,the ratio of thermal pressure to magnetic pressure.For targets with small radius and low atomic number Z,the magnetic pressure is the dominant shock compression mechanism.According to a scaling law,as the target radius and Z increase,the surface ablation pressure becomes the main mechanism generating convergent shocks.Furthermore,an indirect experimental indication of shocked hydrogen compression is provided by optical shadowgraphy measurements of the evolution of the plasma expansion diameter.The results presented here provide a novel basis for the generation of extremely high pressures exceeding Gbar(100 TPa)to enable the investigation of high-pressure physics using femtosecond J-level laser pulses,offering an alternative to nanosecond kJ-laser pulse-driven and pulsed power Z-pinch compression methods. 展开更多
关键词 shock CONVERGENT RETURN
下载PDF
A rat model of multicompartmental traumatic injury and hemorrhagic shock induces bone marrow dysfunction and profound anemia
10
作者 Lauren S.Kelly Jennifer A.Munley +5 位作者 Erick E.Pons Kolenkode B.Kannan Elizabeth M.Whitley Letitia E.Bible Philip A.Efron Alicia M.Mohr 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第3期367-376,共10页
Background:Severe trauma is associated with systemic inflammation and organ dysfunction.Preclinical rodent trauma models are the mainstay of postinjury research but have been criticized for not fully replicating sever... Background:Severe trauma is associated with systemic inflammation and organ dysfunction.Preclinical rodent trauma models are the mainstay of postinjury research but have been criticized for not fully replicating severe human trauma.The aim of this study was to create a rat model of multicompartmental injury which recreates profound traumatic injury.Methods:Male Sprague-Dawley rats were subjected to unilateral lung contusion and hemorrhagic shock(LCHS),multicompartmental polytrauma(PT)(unilateral lung contusion,hemorrhagic shock,cecectomy,bifemoral pseudofracture),or na?ve controls.Weight,plasma toll-l ike receptor 4(TLR4),hemoglobin,spleen to body weight ratio,bone marrow(BM)erythroid progenitor(CFU-GEMM,BFU-E,and CFU-E)growth,plasma granulocyte colony-stimulating factor(G-CSF)and right lung histologic injury were assessed on day 7,with significance defined as p values<0.05(*).Results:Polytrauma resulted in markedly more profound inhibition of weight gain compared to LCHS(p=0.0002)along with elevated plasma TLR4(p<0.0001),lower hemoglobin(p<0.0001),and enlarged spleen to body weight ratios(p=0.004).Both LCHS and PT demonstrated suppression of CFU-E and BFU-E growth compared to naive(p<0.03,p<0.01).Plasma G-CSF was elevated in PT compared to both na?ve and LCHS(p<0.0001,p=0.02).LCHS and PT demonstrated significant histologic right lung injury with poor alveolar wall integrity and interstitial edema.Conclusions:Multicompartmental injury as described here establishes a reproducible model of multicompartmental injury with worsened anemia,splenic tissue enlargement,weight loss,and increased inflammatory activity compared to a less severe model.This may serve as a more effective model to recreate profound traumatic injury to replicate the human inflammatory response postinjury. 展开更多
关键词 ANEMIA i nflammation POLYTRAUMA pseudofracture shock
下载PDF
Effect of the interval between two shocks on ejecta formation from the grooved aluminum surface
11
作者 Mingyang Xu Jianli Shao +1 位作者 Weidong Song Enling Tang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期147-159,共13页
This work focuses on the effect of the interval between two shocks on the ejecta formation from the grooved aluminum(Al_(1100))surface by using smoothed particle hydrodynamics numerical simulation.Two unsupported shoc... This work focuses on the effect of the interval between two shocks on the ejecta formation from the grooved aluminum(Al_(1100))surface by using smoothed particle hydrodynamics numerical simulation.Two unsupported shocks are obtained by the plate-impact between sample and two flyers at interval,with a peak pressure of approximately 30 GPa for each shock.When the shock interval varies from 2.11 to 7.67 times the groove depth,the bubble velocity reduces to a constant,and the micro jetting factor R_(J) from spike to bubble exhibits a non-monotonic change that decreases initially and then increases.At a shock interval of 3.6 times the groove depth,micro jetting factor R_(J) from spike to bubble reaches its minimum value of approximately 0.6.While,the micro jetting factor R_(F) from spike to free surface decreases linearly at first,and stabilizes around 0.25 once the shock interval surpasses 4.18 times the groove depth.When the shock interval is less than 4.18 times the groove depth,the unloading wave generated by the breakout of the first shock wave is superimpose with the unloading part of the second shock wave to form a large tensile area. 展开更多
关键词 EJECTA MICROJET Two shocks INTERVAL Smoothed particle hydrodynamics
下载PDF
Experimental and numerical study on protective effect of RC blast wall against air shock wave
12
作者 Xin-zhe Nian Quan-min Xie +2 位作者 Xin-li Kong Ying-kang Yao Kui Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期567-579,共13页
Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in diff... Prototype experiments were carried out on the explosion-proof performance of the RC blast wall.The mass of TNT detonated in the experiments is 5 kg and 20 kg respectively.The shock wave overpressure was tested in different regions.The above experiments were numerically simulated,and the simulated shock wave overpressure waveforms were compared with that tested and given by CONWEP program.The results show that the numerically simulated waveform is slightly different from the test waveform,but similar to CONWEP waveform.Through dimensional analysis and numerical simulation under different working conditions,the equation for the attenuation rate of the diffraction overpressure behind the blast wall was obtained.According to the corresponding standards,the degree of casualties and the damage degree of the brick concrete building at a certain distance behind the wall can be determined when parameters are set.The above results can provide a reference for the design and construction of the reinforced concrete blast wall. 展开更多
关键词 Blast wall shock wave DIFFRACTION OVERPRESSURE Protection
下载PDF
Evolution of molecular structure of TATB under shock loading from transient Raman spectroscopic technique
13
作者 Hongliang Kang Xue Yang +5 位作者 Wenshuo Yuan Lei Yang Xinghan Li Fusheng Liu Zhengtang Liu Qijun Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期613-620,共8页
By combination of the transient Raman spectroscopic measurement and the density functional theoretical calculations,the structural evolution and stability of TATB under shock compression was investigated.Due to the im... By combination of the transient Raman spectroscopic measurement and the density functional theoretical calculations,the structural evolution and stability of TATB under shock compression was investigated.Due to the improvement in synchronization control between two-stage light gas gun and the transient Raman spectra acquisition,as well as the sample preparation,the Raman peak of the N-O mode of TATB was firstly observed under shock pressure up to 13.6 GPa,noticeably higher than the upper limit of 8.5 GPa reported in available literatures.By taking into account of the continuous shift of the main peak and other observed Raman peaks,we did not distinguish any structural transition or any new species.Moreover,both the present Raman spectra and the time-resolved radiation of TATB during shock loading showed that TATB exhibits higher chemical stability than previous declaration.To reveal the detailed structural response and evolution of TATB under compression,the density functional theoretical calculations were conducted,and it was found that the pressure make N-O bond lengths shorter,nitro bond angles larger,and intermolecular and intra-molecular hydrogen bond interactions enhanced.The observed red shift of Raman peak was ascribed to the abnormal enhancement of H-bound effect on the scissor vibration mode of the nitro group. 展开更多
关键词 TATB Raman spectra Structural evolution shock loading
下载PDF
Propagation Properties of Shock Waves in Polyurethane Foam based on Atomistic Simulations
14
作者 Zhiqiang Hu Jianli Shao +2 位作者 Shiyu Jia Weidong Song Cheng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期117-129,共13页
Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of poros... Porous materials are widely used in the field of protection because of their excellent energy absorption characteristics.In this work,a series of polyurethane microscopic models are established and the effect of porosity on the shock waves is studied with classical molecular dynamics simulations.Firstly,shock Hugoniot relations for different porosities are obtained,which compare well with the experimental data.The pores collapse and form local stress wave,which results in the complex multi-wave structure of the shock wave.The microstructure analysis shows that the local stress increases and the local velocity decreases gradually during the process of pore collapse to complete compaction.Finally,it leads to stress relaxation and velocity homogenization.The shock stress peaks can be fitted with two exponential functions,and the amplitude of attenuation coefficient decreases with the increase of density.Besides,the pore collapse under shock or non-shock are discussed by the entropy increase rate of the system.The energy is dissipated mainly through the multiple interactions of the waves under shock.The energy is dissipated mainly by the friction between atoms under non-shock. 展开更多
关键词 Polyurethane foam shock wave ATTENUATION Atomistic simulation
下载PDF
STABILITY OF TRANSONIC SHOCKS TO THE EULER-POISSON SYSTEM WITH VARYING BACKGROUND CHARGES
15
作者 Yang CAO Yuanyuan XING Na ZHANG 《Acta Mathematica Scientia》 SCIE CSCD 2024年第4期1487-1506,共20页
This paper is devoted to studying the stability of transonic shock solutions to the Euler-Poisson system in a one-dimensional nozzle of finite length.The background charge in the Poisson equation is a piecewise consta... This paper is devoted to studying the stability of transonic shock solutions to the Euler-Poisson system in a one-dimensional nozzle of finite length.The background charge in the Poisson equation is a piecewise constant function.The structural stability of the steady transonic shock solution is obtained by the monotonicity argument.Furthermore,this transonic shock is proved to be dynamically and exponentially stable with respect to small perturbations of the initial data.One of the crucial ingredients of the analysis is to establish the global well-posedness of a free boundary problem for a quasilinear second order equation with nonlinear boundary conditions. 展开更多
关键词 Euler-Poisson system transonic shock varying background charges STABILITY
下载PDF
Early peripheral perfusion index predicts 28-day outcome in patients with septic shock
16
作者 Cheng Chi Hao Gong +2 位作者 Kai Yang Peng Peng Xiaoxia Zhang 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2024年第5期372-378,共7页
BACKGROUND:To investigate the prognostic value of the peripheral perfusion index(PPI)in patients with septic shock.METHODS:This prospective cohort study,conducted at the emergency intensive care unit of Peking Univers... BACKGROUND:To investigate the prognostic value of the peripheral perfusion index(PPI)in patients with septic shock.METHODS:This prospective cohort study,conducted at the emergency intensive care unit of Peking University People's Hospital,recruited 200 patients with septic shock between January 2023 and August 2023.These patients were divided into survival(n=84)and death(n=116)groups based on 28-day outcomes.Clinical evaluations included laboratory tests and clinical scores,with lactate and PPI values assessed upon admission to the emergency room and at 6 h and 12 h after admission.Risk factors associated with mortality were analyzed using univariate and multivariate Cox regression analyses.Receiver operator characteristic(ROC)curve was used to assess predictive performance.Mortality rates were compared,and Kaplan-Meier survival plots were created.RESULTS:Compared to the survival group,patients in the death group were older and had more severe liver damage and coagulation dysfunction,necessitating higher norepinephrine doses and increased fl uid replacement.Higher lactate levels and lower PPI levels at 0 h,6 h,and 12 h were observed in the death group.Multivariate Cox regression identifi ed prolonged prothrombin time(PT),decreased 6-h PPI and 12-h PPI as independent risk factors for death.The area under the curves for 6-h PPI and 12-h PPI were 0.802(95%CI 0.742-0.863,P<0.001)and 0.945(95%CI 0.915-0.974,P<0.001),respectively,which were superior to Glasgow Coma Scale(GCS),Sequential Organ Failure Assessment(SOFA)scores(0.864 and 0.928).Cumulative mortality in the low PPI groups at 6 h and 12 h was signifi cantly higher than in the high PPI groups(6-h PPI:77.52%vs.22.54%;12-h PPI:92.04%vs.13.79%,P<0.001).CONCLUSION:PPI may have value in predicting 28-day mortality in patients with septic shock. 展开更多
关键词 Peripheral perfusion index Septic shock PROGNOSIS Predictive value
下载PDF
Vibration attenuation performance of wind turbine tower using a prestressed tuned mass damper under seismic excitation
17
作者 Lei Zhenbo Liu Gang +1 位作者 Wang Hui Hui Yi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期511-524,共14页
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau... With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation. 展开更多
关键词 wind turbine tower prestressed tuned mass damper vibration control seismic excitation numerical simulation
下载PDF
Impacts of Comorbidity and Mental Shock on Organic Micropollutants in Surface Water During and After the First Wave of COVID-19 Pandemic in Wuhan (2019–2021), China
18
作者 Jian Zhao Jin Kang +10 位作者 Xiaofeng Cao Rui Bian Gang Liu Shengchao Hu Xinghua Wu Chong Li Dianchang Wang Weixiao Qi Cunrui Huang Huijuan Liu Jiuhui Qu 《Engineering》 SCIE EI CAS CSCD 2024年第6期40-48,共9页
The first pandemic wave of coronavirus disease 2019(COVID-19)induced a considerable increase in several antivirals and antibiotics in surface water.The common symptoms of COVID-19 are viral and bacterial infections,wh... The first pandemic wave of coronavirus disease 2019(COVID-19)induced a considerable increase in several antivirals and antibiotics in surface water.The common symptoms of COVID-19 are viral and bacterial infections,while comorbidities(e.g.,hypertension and diabetes)and mental shock(e.g.,insomnia and anxiety)are nonnegligible.Nevertheless,little is known about the long-term impacts of comorbidities and mental shock on organic micropollutants(OMPs)in surface waters.Herein,we monitored 114 OMPs in surface water and wastewater treatment plants(WWTPs)in Wuhan,China,between 2019 and 2021.The pandemic-induced OMP pollution in surface water was confirmed by significant increases in 26 OMP concentrations.Significant increases in four antihypertensives and one diabetic drug suggest that the treatment of comorbidities may induce OMP pollution.Notably,cotinine(a metabolite of nicotine)increased 155 times to 187 ngL1,which might be associated with increased smoking.Additionally,the increases in zolpidem and sulpiride might be the result of worsened insomnia and depression.Hence,it is reasonable to note that mental-health protecting drugs/behavior also contributed to OMP pollution.Among the observed OMPs,telmisartan,lopinavir,and ritonavir were associated with significantly higher ecological risks because of their limited WWTP-removal rate and high ecotoxicity.This study provides new insights into the effects of comorbidities and mental shock on OMPs in surface water during a pandemic and highlights the need to monitor the fate of related pharmaceuticals in the aquatic environment and to improve their removal efficiencies in WWTPs。 展开更多
关键词 Coronavirus disease 2019 COMORBIDITIES Mental shock MICROPOLLUTANT Surface water
下载PDF
Parameters Optimization and Performance Evaluation of the Tuned Inerter Damper for the Seismic Protection of Adjacent Building Structures
19
作者 Xiaofang Kang Jian Wu +1 位作者 Xinqi Wang Shancheng Lei 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期551-593,共43页
In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in ... In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes. 展开更多
关键词 Adjacent buildings tuned inerter damper(TID) H2 norm optimization vibration control energy harvesting
下载PDF
Thermally-induced cracking behaviors of coal reservoirs subjected to cryogenic liquid nitrogen shock
20
作者 Songcai Han Qi Gao +5 位作者 Xinchuang Yan Lile Li Lei Wang Xian Shi Chuanliang Yan Daobing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第8期2894-2908,共15页
The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with t... The benefits of using cryogenic liquid nitrogen shock to enhance coal permeability have been confirmed from experimental perspectives.In this paper,we develop a fully coupled thermo-elastic model in combination with the strain-based isotropic damage theory to uncover the cooling-dominated cracking behaviors through three typical cases,i.e.coal reservoirs containing a wellbore,a primary fracture,and a natural fracture network,respectively.The progressive cracking processes,from thermal fracture initiation,propagation or cessation,deflection,bifurcation to multi-fracture interactions,can be well captured by the numerical model.It is observed that two hierarchical levels of thermal fractures are formed,in which the number of shorter thermal fractures consistently exceeds that of the longer ones.The effects of coal properties related to thermal stress levels and thermal diffusivity on the fracture morphology are quantified by the fracture fractal dimension and the statistical fracture number.The induced fracture morphology is most sensitive to changes in the elastic modulus and thermal expansion coefficient,both of which dominate the complexity of the fracture networks.Coal reservoir candidates with preferred thermal-mechanical properties are also recommended for improving the stimulation effect.Further findings are that there exists a critical injection temperature and a critical in-situ stress difference,above which no thermal fractures would be formed.Preexisting natural fractures with higher density and preferred orientations are also essential for the formation of complex fracture networks.The obtained results can provide some theoretical support for cryogenic fracturing design in coal reservoirs. 展开更多
关键词 Coal reservoirs Cryogenic shock Thermal cracking behaviors Fracture morphology
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部