期刊文献+
共找到947篇文章
< 1 2 48 >
每页显示 20 50 100
Aseismic performances of constrained damping lining structures made of rubber-sand-concrete
1
作者 Xiancheng Mei Qian Sheng +4 位作者 Jian Chen Zhen Cui Jianhe Li Chuanqi Li Daniel Dias 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1522-1537,共16页
Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using ... Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m. 展开更多
关键词 Constrained damping structure Aseismic performance Hammer impact tests damping layer Peak ground acceleration Overburden depth
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys
2
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE damping properties.
下载PDF
Prediction of Damping Capacity Demand in Seismic Base Isolators via Machine Learning
3
作者 Ayla Ocak Umit Isıkdag +3 位作者 Gebrail Bekdas Sinan Melih Nigdeli Sanghun Kim ZongWoo Geem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2899-2924,共26页
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe... Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity. 展开更多
关键词 Vibration control base isolation machine learning damping capacity
下载PDF
Optimization on microstructure,mechanical properties and damping capacities of duplex structured Mg–8Li–4Zn–1Mn alloys 被引量:1
4
作者 Tongtong Cao Yong Zhu +7 位作者 Yuyang Gao Yan Yang Gang Zhou Xiaofei Cui Chen Wen Bin Jiang Xiaodong Peng Fusheng Pan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期949-958,共10页
Optimizing the mechanical properties and damping capacity of the duplex-structured Mg–Li–Zn–Mn alloy by tailoring the microstructure via hot extrusion was investigated.The results show that the Mg–8Li–4Zn–1Mn al... Optimizing the mechanical properties and damping capacity of the duplex-structured Mg–Li–Zn–Mn alloy by tailoring the microstructure via hot extrusion was investigated.The results show that the Mg–8Li–4Zn–1Mn alloy is mainly composed ofα-Mg,β-Li,Mg–Li–Zn and Mn phases.The microstructure of the test alloy is refined owing to dynamic recrystallization(DRX)during hot extrusion.After hot extrusion,the crushed precipitates are uniformly distributed in the test alloy.The yield strength(YS),ultimate tensile strength(UTS),and elongation(EL)of as-extruded alloy reach 156 MPa,208 MPa,and 32.3%,respectively,which are much better than that of as-cast alloy.Furthermore,the as-extruded and as-cast alloys both exhibit superior damping capacities,with the damping capacity(Q^(-1))of 0.030 and 0.033 at the strain amplitude of 2×10^(-3),respectively.The mechanical properties of the test alloy can be significantly improved by hot extrusion,whereas the damping capacities have no noticeable change,which indicates that the duplex-structured Mg–Li alloys with appropriate mechanical properties and damping properties can be obtained by alloying and hot extrusion. 展开更多
关键词 magnesium–lithium alloys hot extrusion MICROSTRUCTURE mechanical properties damping capacity
下载PDF
Damping performance of SiC nanoparticles reinforced magnesium matrix composites processed by cyclic extrusion and compression
5
作者 Mahmoud Ebrahimi Li Zhang +2 位作者 Qudong Wang Hao Zhou Wenzhen Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1608-1617,共10页
This work dealt with the damping performance and its underlying mechanism in SiC nanoparticles reinforced AZ91D composite(SiC_(np)/AZ91D)processed by cyclic extrusion and compression(CEC).It was found that the CEC pro... This work dealt with the damping performance and its underlying mechanism in SiC nanoparticles reinforced AZ91D composite(SiC_(np)/AZ91D)processed by cyclic extrusion and compression(CEC).It was found that the CEC process significantly affects the damping performance of the composite due to alterations in the density of dislocations and grain boundaries in the matrix alloy.Although there would be dynamic precipitation of the Mg17Al12 phase during processing which increases the phase interface and limits the mobility of dislocations and grain boundaries.The results also showed that the damping capacity of 1%SiC_(np)/AZ91D composite continuously decreases with adding CEC pass number and it consistently increases with rising the applied temperature.Considering the first derivative of the tanδ-T curve,the dominant damping mechanism based on test temperature can be divided into three regions.These three regions are as follows(i)dislocation vibration of the weak pinning points(≤T_(cr)),(ii)dislocation vibration of the strong pinning points(T_(cr)∼T_(V)),and(iii)grain boundary/interface sliding(≥T_(V)) 展开更多
关键词 Metal matrix composite SiC nanoparticles Severe plastic deformation Temperature-dependent damping curves damping mechanism
下载PDF
Laboratory investigation on damping characteristics of homogeneous and stratified soil-ash system
6
作者 Amit Kumar Ram Supriya Mohanty 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2757-2777,共21页
In this study,the damping responses of uniform soil,equi-proportional fly ash,and local soil as a single unit were investigated.The large-strain cyclic triaxial tests were performed for the specimen compacted at the d... In this study,the damping responses of uniform soil,equi-proportional fly ash,and local soil as a single unit were investigated.The large-strain cyclic triaxial tests were performed for the specimen compacted at the desired density(95%e99%of maximum dry density).The compacted specimens were tested under the loading frequency of 0.3e1 Hz with medium confinement of 70e100 kPa.Also,the unsymmetrical behavior of the hysteresis loop was analyzed using three different damping estimation approaches,i.e.symmetric hysteresis loop(SHL),asymmetric hysteresis loop(ASHL),and the modified American Society for Testing and Materials(ASTM)method.The outcome of the study shows for fly ash,local soil,and layered soil-ash,the ASHL technique has the highest damping value,followed by ASTM and then the SHL approach.The specimens prepared under high density and subjected to high confinement show low damping values.However,the specimens tested at high frequency exhibits high damping behavior.Similarly,the damping value of fly ash determined using the SHL and ASHL methods has a similar profile and reaches a maximum at 1%shear strain value before decreasing.The composite stratified deposit exhibits more dependency on relative compaction,confining pressure,and less on loading frequency.Based on the results,it is highly recommended to use the ASHL approach,especially under large strain conditions irrespective of soil type.The maximum damping ratio of stratified deposits is always in between the damping ratio of local soil and fly ash.The damping ratio of stratified soil and local soil is slightly larger than that of the other soils,although the damping ratio of fly ash is equivalent to that of the sand and clayey soil.These results may be helpful in the accurate determination of the damping properties of the layered soil-ash system that is required in the seismic response analysis. 展开更多
关键词 Homogeneous soil Stratified soil-ash system damping behavior Cyclic triaxial test Asymmetric hysteresis loop Model fitting
下载PDF
Nonlocal stress gradient formulation for damping vibration analysis of viscoelastic microbeam in thermal environment
7
作者 Hai QING Huidiao SONG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第5期773-786,共14页
An integral nonlocal stress gradient viscoelastic model is proposed on the basis of the integral nonlocal stress gradient model and the standard viscoelastic model,and is utilized to investigate the free damping vibra... An integral nonlocal stress gradient viscoelastic model is proposed on the basis of the integral nonlocal stress gradient model and the standard viscoelastic model,and is utilized to investigate the free damping vibration analysis of the viscoelastic BernoulliEuler microbeams in thermal environment.Hamilton's principle is used to derive the differential governing equations and corresponding boundary conditions.The integral relations between the strain and the nonlocal stress are converted into a differential form with constitutive constraints.The size-dependent axial thermal stress due to the variation of the environmental temperature is derived explicitly.The Laplace transformation is utilized to obtain the explicit expression for the bending deflection and moment.Considering the boundary conditions and constitutive constraints,one can get a nonlinear equation with complex coefficients,from which the complex characteristic frequency can be determined.A two-step numerical method is proposed to solve the elastic vibration frequency and the damping ratio.The effects of length scale parameters,viscous coefficient,thermal stress,vibration order on the vibration frequencies,and critical viscous coefficient are investigated numerically for the viscoelastic Bernoulli-Euler microbeams under different boundary conditions. 展开更多
关键词 damping vibration size effect integral nonlocal stress gradient model standard viscoelastic model Laplace transformation
下载PDF
An abnormal carbody swaying of intercity EMU train caused by low wheel-rail equivalent conicity and damping force unloading of yaw damper
8
作者 Yixiao Li Maoru Chi +1 位作者 Zhaotuan Guo Shulin Liang 《Railway Engineering Science》 2023年第3期252-268,共17页
Low-frequency carbody swaying phenomenon often occurs to railway vehicles due to hunting instability,which seriously deteriorates the ride comfort of passengers.This paper investigates low-frequency carbody swaying th... Low-frequency carbody swaying phenomenon often occurs to railway vehicles due to hunting instability,which seriously deteriorates the ride comfort of passengers.This paper investigates low-frequency carbody swaying through experimental analysis and numerical simulation.In the tests,the carbody acceleration,the wheel-rail profiles,and the dynamic characteristics of dampers were measured to understand the characteristics of the abnormal carbody vibration and to find out its primary contributor.Linear and nonlinear numerical simulations on the mechanism and optimization measures were carried out to solve this carbody swaying issue.The results showed that the carbody swaying is the manifest of carbody hunting instability.The low equivalent conicity and the decrease of dynamic damping of the yaw damper are probably the cause of this phenomenon.The optimization measures to increase the equivalent conicity and dynamic damping of the yaw damper were put forward and verified by on-track tests.The results of this study could enrich the knowledge of carbody hunting and provide a reference for solving abnormal carbody vibrations. 展开更多
关键词 Low-frequency carbody swaying Intercity EMU Equivalent conicity damping characteristics Test verification
下载PDF
Resonance and Bifurcation of Fractional Nonlinear Systems with Power Damping Term for Robot Grinding
9
作者 Wei Shi Qingxue Huang +4 位作者 Jinzhu Zhang Tao Wang Ziliang Li Yanjie Zhang Xiaoyan Xiong 《Journal of Beijing Institute of Technology》 EI CAS 2023年第1期23-40,共18页
A fractional nonlinear system with power damping term is introduced to study the forced vibration system in order to solve the resonance and bifurcation problems between grinding wheel and steel bar during robot grind... A fractional nonlinear system with power damping term is introduced to study the forced vibration system in order to solve the resonance and bifurcation problems between grinding wheel and steel bar during robot grinding.The robot,grinding wheel and steel bar are reduced to a spring-damping second-order system model.The implicit function equations of vibration amplitude of the dynamic system with coulomb friction damping,linear damping,square damping and cubic damping are obtained by average method.The stability of the system is analyzed and explained,and the stability condition of the system is proposed.Then,the amplitude-frequency characteristic curves of the system under different fractional differential orders,nonlinear stiffness parameters,fractional differential term coefficients and external excitation amplitude are analyzed.It is shown that the fractional differential term in the dynamic system is the damping characteristic.Then the influence of four kinds of damping on the vibration amplitude of the system under the same parameter is investigated and it is proved that the cubic damping suppresses the vibration of the system to the maximum extent.Finally,based on the idea that the equilibrium point of the system is the constant part of the Fourier series expansion term,the bifurcation behavior caused by the change of damping parameters in linear damping,square damping and cubic damping systems with different values of fractional differential order is investigated. 展开更多
关键词 robot grinding fractional system average method power damping resonance and bifurcation
下载PDF
A marine gravimeter based on electromagnetic damping and its tests in the South China Sea
10
作者 Pengfei WU Lin WU +3 位作者 Lifeng BAO Long WANG Bo WANG Danling TANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期792-803,共12页
A new gravity sensor based on electromagnetic damping for the JMGrav marine gravimeter is presented.The new gravity sensor considered the advanced construction methods of the electromagnetic damping system of the grav... A new gravity sensor based on electromagnetic damping for the JMGrav marine gravimeter is presented.The new gravity sensor considered the advanced construction methods of the electromagnetic damping system of the gravimeter.The design features of the new system are discussed and the research survey data in the South China Sea are shown.Numerical simulations are applied to model the magnetic and mechanical characteristics of the system using finite element analysis and to evaluate the force distribution and the resulting damping effects.The performance characteristics of the system were tested on a motion simulator in laboratory,and the gravimeter was subjected to vertical accelerations of up to 100 Gal in 1-1000 s.It was found that the amplitude reduction of vertical accelerations in 3-15 s is 30-45 dB,with a time lag of 2-5 s,while the effect on gravity in period greater than 600 s is less than 0.5 dB,with a time lag of less than 100 s.The accelerations cause discrepancies of approximately only 1 mGal between the static value and the mean dynamic value.The sea tests were conducted in September 2020.Gravity measurements were taken with a JMGrav marine gravimeter onboard the R/V Dongfanghong 3,and the effective survey line exceeded 2000 km.Completely irregular accelerations with peaks up to 100 Gal yielded a reduction of approximately 40 dB in amplitude.The survey data were evaluated using ocean gravity field models and grid line tests.The results show that the accuracy of the gravity measurements is better than 2 mGal. 展开更多
关键词 electromagnetic damping JMGrav marine gravimeter marine gravity survey
下载PDF
Design and analysis of a two-dimensional vibration control mechanism based on vibro-impact damping
11
作者 张来喜 QIAN Feng WU Mingliang 《High Technology Letters》 EI CAS 2023年第1期105-112,共8页
The robotic drilling always generates the axial vibration along the drill bit and the torsional vibration around the drill bit,which will adversely affect the drilling precision.A vibration control mechanism fixed bet... The robotic drilling always generates the axial vibration along the drill bit and the torsional vibration around the drill bit,which will adversely affect the drilling precision.A vibration control mechanism fixed between the end-effector and the robot is proposed,which can suppress the axial and torsional vibrations based on the principle of vibro-impact(VI)damping.The energy dissipation of the system by vibro-impact damping is analyzed.Then,the influence of the structure parameters on the vibration attenuation effect is studied,and a semi-active vibration control method of variable collision clearance is presented.The simulation results show that the control method has effective vibration control performance. 展开更多
关键词 robotic drilling two-dimensional vibration control impact damping variable clearance semi-active vibration control
下载PDF
A Review of Influencing Factors of Damping Properties of High Manganese Steel
12
作者 Chao Chen Jiale Wang +2 位作者 Jianyu Jiao Fengmei Bai Guangwen Zheng 《Journal of Materials Science and Chemical Engineering》 CAS 2023年第3期52-64,共13页
High manganese steel has wide prospects in industry due to their excellent mechanical and damping properties. The quenching structures of high manganese steel are ε-martensite, γ-austenite and α'-martensite. Re... High manganese steel has wide prospects in industry due to their excellent mechanical and damping properties. The quenching structures of high manganese steel are ε-martensite, γ-austenite and α'-martensite. Researches show that the damping properties of high manganese steel are related to these microstructures. Besides, there are many ways to improve the damping property of damping alloys. This paper reviews the damping mechanism and the influences of the ad-dition of alloying elements, heat treatment, pre-deformation and other factors on their damping performance, hoping to provide methods and ideas for the study of damping properties of high manganese steel. . 展开更多
关键词 High Manganese Steel damping Properties Alloying Elements Heat Treatment DEFORMATION
下载PDF
Blowup of Solutions to the Non-Isentropic Compressible Euler Equations with Time-Dependent Damping and Vacuum
13
作者 Yuping Feng Huimin Yu Wanfang Shen 《Journal of Applied Mathematics and Physics》 2023年第7期1881-1894,共14页
This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data i... This paper mainly studies the blowup phenomenon of solutions to the compressible Euler equations with general time-dependent damping for non-isentropic fluids in two and three space dimensions. When the initial data is assumed to be radially symmetric and the initial density contains vacuum, we obtain that classical solution, especially the density, will blow up on finite time. The results also reveal that damping can really delay the singularity formation. 展开更多
关键词 Compressible Euler Equations BLOWUP General Time-Dependent damping VACUUM
下载PDF
A Review on Methods for Determining the Vibratory Damping Ratio
14
作者 Nkibeu Jean Bertin Charly Julien Nyobe +1 位作者 Moussa Sali Madja Doumbaye Jerémie 《Open Journal of Civil Engineering》 2023年第2期199-209,共11页
This article aims to popularize the methods for determining the vibratory damping ratio, to explain the various mathematical and physical theorems related to the establishment of literal expressions. Vibration damping... This article aims to popularize the methods for determining the vibratory damping ratio, to explain the various mathematical and physical theorems related to the establishment of literal expressions. Vibration damping is an essential parameter to reduce the dynamic responses of structures. The study aimed at its determination is necessary and essential for the safeguard of buildings and human lives during the earthquake. Among the main methods studied in this article, the free vibration attenuation method seems to be easy to implement but requires a state-of-the-art device to capture the responses. In addition to this device, the other methods require other equipment for the vibration of the system and the transformation of the responses in the frequency domain. 展开更多
关键词 damping OSCILLATOR Attenuation of Free Vibrations Amplification at Resonance Resonance Peak Width Energy Dissipated by damping Stored Elastic Energy
下载PDF
Design of Damping Damping Design of New Boring Head Drive Structure
15
作者 Haoyang LIU Zhaowei MENG +1 位作者 Liang HAN Wenwu ZHANG 《Mechanical Engineering Science》 2023年第1期4-6,I0006,I0007,共5页
This paper takes the boring head of 20 roll mill as the research object,optimizes the vibration inside the boring head through a differential damping structure,and then conducts the 3 d model inside the boring head th... This paper takes the boring head of 20 roll mill as the research object,optimizes the vibration inside the boring head through a differential damping structure,and then conducts the 3 d model inside the boring head through SolidWorks,and checks the interference of the boring head model.Finally,Ansys workbench finite element analysis software is used to analyze and verify the vibration damping characteristics of the differential damping structure. 展开更多
关键词 Gear drive damping Vibration Reduction
下载PDF
Mechanical property of cylindrical sandwich shell with gradient core of entangled wire mesh
16
作者 Xin Xue Chao Zheng +1 位作者 Fu-qiang Lai Xue-qian Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期510-522,共13页
To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed... To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation. 展开更多
关键词 Entangled wire mesh Gradient cylindrical sandwich shell Vacuum brazing Secant stiffness damping
下载PDF
Scattering of Water Waves by Dual Symmetric Inclined Floating Porous Barriers Using the DBEM
17
作者 WANG Li-xian DENG Yan-wen +1 位作者 YE Yang-sha DENG Zheng-zhi 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期156-168,共13页
The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering th... The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers. 展开更多
关键词 dual boundary element method inclined perforated floating breakwater reflection coefficient transmission coefficient damping layer
下载PDF
Capillary Property of Entangled Porous Metallic Wire materials and Its Application in Fluid Buffers:Theoretical Analysis and Experimental Study
18
作者 Yu Tang Yiwan Wu +1 位作者 Hu Cheng Rong Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期400-416,共17页
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en... Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.). 展开更多
关键词 Entangled porous metallic wire materials Capillary property Viscousfluid Low-speed impact damping force
下载PDF
Influence of Trailing-Edge Wear on the Vibrational Behavior of Wind Turbine Blades
19
作者 Yuanjun Dai Xin Wei +2 位作者 Baohua Li Cong Wang Kunju Shi 《Fluid Dynamics & Materials Processing》 EI 2024年第2期337-348,共12页
To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experimen... To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experiments,the natural frequencies of trailing-edge worn blades-1,-2,and-3 increase the most in the second to fourth order,thefifth order increases in the middle,and thefirst order increases the least.The damping ratio data indi-cate that,in general,thefirstfive-order damping ratios of trailing-edge worn blades-1 and trailing-edge worn blades-2 are reduced,and thefirstfive-order damping ratios of trailing-edge worn blades-3 are slightly improved.The mode shape diagram shows that the trailing-edge worn blades-1 and-2 have a large swing in the tip and the blade,whereas the second-and third-order vibration shapes of the trailing edge-worn blade-3 tend to be improved.Overall,all these results reveal that the blade’s mass and the wear area are the main fac-tors affecting the vibration characteristics of wind turbine blades. 展开更多
关键词 Wind turbine modal test natural frequency damping ratio mode shape
下载PDF
Research on the evolution law of dynamic performance of CR400BF EMU train based on stochastic dynamics simulation
20
作者 Di Cheng Yuqing Wen +3 位作者 Zhiqiang Guo Xiaoyi Hu Pengsong Wang Zhikun Song 《Railway Sciences》 2024年第2期143-155,共13页
Purpose–This paper aims to obtain the evolution law of dynamic performance of CR400BF electric multiple unit(EMU).Design/methodology/approach–Using the dynamic simulation based on field test,stiffness of rotary arm ... Purpose–This paper aims to obtain the evolution law of dynamic performance of CR400BF electric multiple unit(EMU).Design/methodology/approach–Using the dynamic simulation based on field test,stiffness of rotary arm nodes and damping coefficient of anti-hunting dampers were tested.Stiffness,damping coefficient,friction coefficient,track gauge were taken as random variables,the stochastic dynamics simulation method was constructed and applied to research the evolution law with running mileage of dynamic index of CR400BF EMU.Findings–The results showed that stiffness and damping coefficient subjected to normal distribution,the mean and variance were computed and the evolution law of stiffness and damping coefficient with running mileage was obtained.Originality/value–Firstly,based on the field test we found that stiffness of rotary arm nodes and damping coefficient of anti-hunting dampers subjected to normal distribution,and the evolution law of stiffness and damping coefficient with running mileage was proposed.Secondly stiffness,damping coefficient,friction coefficient,track gauge were taken as random variables,the stochastic dynamics simulation method was constructed and applied to the research to the evolution law with running mileage of dynamic index of CR400BF EMU. 展开更多
关键词 Vehicle system dynamics Stiffness of rotary arm nodes Anti-snaking damper damping Random variable
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部