期刊文献+
共找到956篇文章
< 1 2 48 >
每页显示 20 50 100
Effects of residual stress and viscous and hysteretic dampings on the stability of a spinning micro-shaft
1
作者 A.A.MONAJEMI M.MOHAMMADIMEHR 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第8期1251-1268,共18页
This study examines the effects of the residual stress and viscous and hysteretic dampings on the vibrational behavior and stability of a spinning Timoshenko micro-shaft.A modified couple stress theory(MCST)is used to... This study examines the effects of the residual stress and viscous and hysteretic dampings on the vibrational behavior and stability of a spinning Timoshenko micro-shaft.A modified couple stress theory(MCST)is used to elucidate the sizedependency of the micro-shaft spinning stability,and the equations of motion are derived by employing Hamilton’s principle and a spatial beam for spinning micro-shafts.Moreover,a differential quadrature method(DQM)is presented,along with the exact solution for the forward and backward(FW-BW)complex frequencies and normal modes.The effects of the material length scale parameter(MLSP),the spinning speed,the viscous damping coefficient,the hysteretic damping,and the residual stress on the stability of the spinning micro-shafts are investigated.The results indicate that the MLSP,the internal dampings(viscous and hysteretic),and the residual stress have significant effects on the complex frequency and stability of the spinning micro-shafts.Therefore,it is crucial to take these factors into account while these systems are designed and analyzed.The results show that an increase in the MLSP leads to stiffening of the spinning micro-shaft,increases the FW-BW dimensionless complex frequencies of the system,and enhances the stability of the system.Additionally,a rise in the tensile residual stresses causes an increase in the FW-BW dimensionless complex frequencies and stability of the micro-shafts,while the opposite is true for the compressive residual stresses.The results of this research can be employed for designing spinning structures and controlling their vibrations,thus forestalling resonance. 展开更多
关键词 residual stress viscous and hysteretic dampings STABILITY spinning microshaft
下载PDF
SOME STABILITY RESULTS FOR TIMOSHENKO SYSTEMS WITH COOPERATIVE FRICTIONAL AND INFINITE-MEMORY DAMPINGS IN THE DISPLACEMENT
2
作者 Aissa GUESMIA Salim MESSA O UDI 《Acta Mathematica Scientia》 SCIE CSCD 2016年第1期1-33,共33页
In this paper, we consider a vibrating system of Timoshenko-type in a one- dimensional bounded domain with complementary frictional damping and infinite memory acting on the transversal displacement. We show that the ... In this paper, we consider a vibrating system of Timoshenko-type in a one- dimensional bounded domain with complementary frictional damping and infinite memory acting on the transversal displacement. We show that the dissipation generated by these two complementary controls guarantees the stability of the system in case of the equal-speed propagation as well as in the opposite case. We establish in each case a general decay estimate of the solutions. In the particular case when the wave propagation speeds are different and the frictional damping is linear, we give a relationship between the smoothness of the initiM data and the decay rate of the solutions. By the end of the paper, we discuss some applications to other Timoshenko-type systems. 展开更多
关键词 WELL-POSEDNESS DECAY DAMPING TIMOSHENKO THERMOELASTICITY
下载PDF
Aseismic performances of constrained damping lining structures made of rubber-sand-concrete
3
作者 Xiancheng Mei Qian Sheng +4 位作者 Jian Chen Zhen Cui Jianhe Li Chuanqi Li Daniel Dias 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1522-1537,共16页
Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using ... Flexible damping technology considering aseismic materials and aseismic structures seems be a good solution for engineering structures.In this study,a constrained damping structure for underground tunnel lining,using a rubber-sand-concrete(RSC)as the aseismic material,is proposed.The aseismic performances of constrained damping structure were investigated by a series of hammer impact tests.The damping layer thickness and shape effects on the aseismic performance such as effective duration and acceleration amplitude of time-domain analysis,composite loss factor and damping ratio of the transfer function analysis,and total vibration level of octave spectrum analysis were discussed.The hammer impact tests revealed that the relationship between the aseismic performance and damping layer thickness was not linear,and that the hollow damping layer had a better aseismic performance than the flat damping layer one.The aseismic performances of constrained damping structure under different seismicity magnitudes and geological conditions were investigated.The effects of the peak ground acceleration(PGA)and tunnel overburden depth on the aseismic performances such as the maximum principal stress and equivalent plastic strain(PEEQ)were discussed.The numerical results show the constrained damping structure proposed in this paper has a good aseismic performance,with PGA in the range(0.2-1.2)g and tunnel overburden depth in the range of 0-300 m. 展开更多
关键词 Constrained damping structure Aseismic performance Hammer impact tests Damping layer Peak ground acceleration Overburden depth
下载PDF
Equivalent linear model for seismic damage evaluation of single-degree-of-freedom systems representing reinforced concrete structures considering cyclic degradation behavior
4
作者 Lulu Yan Ding-Hao Yu 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第3期637-648,共12页
In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for i... In this study,a novel equivalent damping ratio model that is suitable for reinforced concrete(RC)structures considering cyclic degradation behavior is developed,and a new equivalent linearization analysis method for implementing the proposed equivalent damping ratio model for use in seismic damage evaluation is presented.To this end,Ibarra’s peak-oriented model,which incorporates an energy-based degradation rule,is selected for representing hysteretic behavior of RC structure,and the optimized equivalent damping for predicting the maximum displacement response is presented by using the empirical method,in which the effect of cyclic degradation is considered.Moreover,the relationship between the hysteretic energy dissipation of the inelastic system and the elastic strain energy of the equivalent linear system is established so that the proposed equivalent linear system can be directly integrated with the Park-Ang seismic model to implement seismic damage evaluation.Due to the simplicity of the equivalent linearization method,the proposed method provides an efficient and reliable way of obtaining comprehensive insight into the seismic performance of RC structures.The verification demonstrates the validity of the proposed method. 展开更多
关键词 degrading system equivalent linear system equivalent damping seismic damage RC structures
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys
5
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment MICROSTRUCTURE Damping properties.
下载PDF
Prediction of Damping Capacity Demand in Seismic Base Isolators via Machine Learning
6
作者 Ayla Ocak Umit Isıkdag +3 位作者 Gebrail Bekdas Sinan Melih Nigdeli Sanghun Kim ZongWoo Geem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2899-2924,共26页
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe... Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity. 展开更多
关键词 Vibration control base isolation machine learning damping capacity
下载PDF
Mechanical property of cylindrical sandwich shell with gradient core of entangled wire mesh
7
作者 Xin Xue Chao Zheng +1 位作者 Fu-qiang Lai Xue-qian Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期510-522,共13页
To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed... To explore the wide-frequency damping and vibration-attenuation performances in the application of aerospace components,the cylindrical sandwich shell structure with a gradient core of entangled wire mesh was proposed in this paper.Firstly,the gradient cores of entangled wire mesh in the axial and radial directions were prepared by using an in-house Numerical Control weaving machine,and the metallurgical connection between skin sheets and the gradient core was performed using vacuum brazing.Secondly,to investigate the mechanical properties of cylindrical sandwich shells with axial or radial gradient cores,quasi-static and dynamic mechanical experiments were carried out.The primary evaluations of mechanical properties include secant stiffness,natural frequency,Specific Energy Absorption(SEA),vibration acceleration level,and so on.The results suggest that the vibration-attenuation performance of the sandwich shell is remarkable when the high-density core layer is at the end of the shell or abuts the inner skin.The axial gradient material has almost no influence on the vibration frequencies of the shell,whereas the vibration frequencies increase dramatically when the high-density core layer approaches the skin.Moreover,compared to the conventional sandwich shells,the proposed functional grading cylindrical sandwich shell exhibits more potential in mass reduction,stiffness designing,and energy dissipation. 展开更多
关键词 Entangled wire mesh Gradient cylindrical sandwich shell Vacuum brazing Secant stiffness Damping
下载PDF
Capillary Property of Entangled Porous Metallic Wire materials and Its Application in Fluid Buffers:Theoretical Analysis and Experimental Study
8
作者 Yu Tang Yiwan Wu +1 位作者 Hu Cheng Rong Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期400-416,共17页
Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property en... Strong impact does serious harm to the military industries so it is necessary to choose reasonable cushioning material and design effective buffers to prevent the impact of equipment.Based on the capillary property entangled porous metallic wire materials(EPMWM),this paper designed a composite buffer which uses EPMWM and viscous fluid as cushioning materials under the low-speed impact of the recoil force device of weapon equipment(such as artillery,mortar,etc.).Combined with the capillary model,porosity,hydraulic diameter,maximum pore diameter and pore distribution were used to characterize the pore structure characteristics of EPMWM.The calculation model of the damping force of the composite buffer was established.The low-speed impact test of the composite buffer was conducted.The parameters of the buffer under low-speed impact were identified according to the model,and the nonlinear model of damping force was obtained.The test results show that the composite buffer with EPMWM and viscous fluid can absorb the impact energy from the recoil movement effectively,and provide a new method for the buffer design of weapon equipment(such as artillery,mortar,etc.). 展开更多
关键词 Entangled porous metallic wire materials Capillary property Viscousfluid Low-speed impact Damping force
下载PDF
Scattering of Water Waves by Dual Symmetric Inclined Floating Porous Barriers Using the DBEM
9
作者 WANG Li-xian DENG Yan-wen +1 位作者 YE Yang-sha DENG Zheng-zhi 《China Ocean Engineering》 SCIE EI CSCD 2024年第1期156-168,共13页
The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering th... The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers. 展开更多
关键词 dual boundary element method inclined perforated floating breakwater reflection coefficient transmission coefficient damping layer
下载PDF
Near resonance vibration isolation on a levered-dual response(LEDAR)Coulomb-damped system by differential preloads/offsets in linear springs
10
作者 T.I.TOLUWALOJU C.K.THEIN D.HALIM 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第6期1033-1050,共18页
The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs... The levered-dual response(LEDAR)Coulomb-damped system attains near resonant vibration isolation by differential preloads/offsets in linear springs.It takes the advantages of both the preloads/offsets in linear springs and the guiderail friction for realizing different levels of vibration isolation.The isolation capacities are investigated on the strategies with both the horizontal and vertical guiderails,with the horizontal rail only,and without guiderails.The compressive preloads generally result in the consumption of most of the initial excitation energy so as to overcome the potential threshold.The isolation onsets at the frequency ratio of 1∓0.095 on the left-hand side(LHS)and the right-hand side(RHS)of the lever are relative to the load plate connector.The observed near resonant isolation thus makes the LEDAR system a candidate for the isolation of the mechanical systems about resonance while opening a path for simultaneous harvesterisolation functions and passive functions at extreme frequencies. 展开更多
关键词 lever ratio Coulomb damping preload tension/compression isolation band/depth offset potential
下载PDF
Influence of Trailing-Edge Wear on the Vibrational Behavior of Wind Turbine Blades
11
作者 Yuanjun Dai Xin Wei +2 位作者 Baohua Li Cong Wang Kunju Shi 《Fluid Dynamics & Materials Processing》 EI 2024年第2期337-348,共12页
To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experimen... To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experiments,the natural frequencies of trailing-edge worn blades-1,-2,and-3 increase the most in the second to fourth order,thefifth order increases in the middle,and thefirst order increases the least.The damping ratio data indi-cate that,in general,thefirstfive-order damping ratios of trailing-edge worn blades-1 and trailing-edge worn blades-2 are reduced,and thefirstfive-order damping ratios of trailing-edge worn blades-3 are slightly improved.The mode shape diagram shows that the trailing-edge worn blades-1 and-2 have a large swing in the tip and the blade,whereas the second-and third-order vibration shapes of the trailing edge-worn blade-3 tend to be improved.Overall,all these results reveal that the blade’s mass and the wear area are the main fac-tors affecting the vibration characteristics of wind turbine blades. 展开更多
关键词 Wind turbine modal test natural frequency damping ratio mode shape
下载PDF
Review of the Analysis and Suppression for High-frequency Oscillations of the Grid-connected Wind Power Generation System
12
作者 Bo Pang Qi Si +4 位作者 Pan Jiang Kai Liao Xiaojuan Zhu Jianwei Yang Zhengyou He 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期127-142,共16页
High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is... High-frequency oscillation(HFO)of gridconnected wind power generation systems(WPGS)is one of the most critical issues in recent years that threaten the safe access of WPGS to the grid.Ensuring the WPGS can damp HFO is becoming more and more vital for the development of wind power.The HFO phenomenon of wind turbines under different scenarios usually has different mechanisms.Hence,engineers need to acquire the working mechanisms of the different HFO damping technologies and select the appropriate one to ensure the effective implementation of oscillation damping in practical engineering.This paper introduces the general assumptions of WPGS when analyzing HFO,systematically summarizes the reasons for the occurrence of HFO in different scenarios,deeply analyses the key points and difficulties of HFO damping under different scenarios,and then compares the technical performances of various types of HFO suppression methods to provide adequate references for engineers in the application of technology.Finally,this paper discusses possible future research difficulties in the problem of HFO,as well as the possible future trends in the demand for HFO damping. 展开更多
关键词 Damping method High-frequency oscillation STABILITY Wind power generation
下载PDF
Transient Damping of Virtual Synchronous Generator for Enhancing Synchronization Stability during Voltage Dips
13
作者 Shitao Sun Yu Lei +4 位作者 Guowen Hao Yi Lu Jindong Liu Zhaoxin Song Jie Zhang 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第2期143-151,共9页
Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtua... Virtual synchronous generators(VSGs)are widely introduced to the renewable power generation,the variablespeed pumped storage units,and so on,as a promising gridforming solution.It is noted that VSGs can provide virtual inertia for frequency support,but the larger inertia would worsen the synchronization stability,referring to keeping synchronization with the grid during voltage dips.Thus,this paper presents a transient damping method of VSGs for enhancing the synchronization stability during voltage dips.It is revealed that the loss of synchronization(LOS)of VSGs always accompanies with the positive frequency deviation and the damping is the key factor to remove LOS when the equilibrium point exists.In order to enhance synchronization stability during voltage dips,the transient damping is proposed,which is generated by the frequency deviation in active power loop.Additionally,the proposed method can realize seamless switching between normal state and grid fault.Moreover,detailed control design for transient damping gain is given to ensure the synchronization stability under different inertia requirements during voltage dips.Finally,the experimental results are presented to validate the analysis and the effectiveness of the improved transient damping method. 展开更多
关键词 Virtual synchronous generator(VSG) Transient damping Synchronization stability Voltage dips
下载PDF
Research on the evolution law of dynamic performance of CR400BF EMU train based on stochastic dynamics simulation
14
作者 Di Cheng Yuqing Wen +3 位作者 Zhiqiang Guo Xiaoyi Hu Pengsong Wang Zhikun Song 《Railway Sciences》 2024年第2期143-155,共13页
Purpose–This paper aims to obtain the evolution law of dynamic performance of CR400BF electric multiple unit(EMU).Design/methodology/approach–Using the dynamic simulation based on field test,stiffness of rotary arm ... Purpose–This paper aims to obtain the evolution law of dynamic performance of CR400BF electric multiple unit(EMU).Design/methodology/approach–Using the dynamic simulation based on field test,stiffness of rotary arm nodes and damping coefficient of anti-hunting dampers were tested.Stiffness,damping coefficient,friction coefficient,track gauge were taken as random variables,the stochastic dynamics simulation method was constructed and applied to research the evolution law with running mileage of dynamic index of CR400BF EMU.Findings–The results showed that stiffness and damping coefficient subjected to normal distribution,the mean and variance were computed and the evolution law of stiffness and damping coefficient with running mileage was obtained.Originality/value–Firstly,based on the field test we found that stiffness of rotary arm nodes and damping coefficient of anti-hunting dampers subjected to normal distribution,and the evolution law of stiffness and damping coefficient with running mileage was proposed.Secondly stiffness,damping coefficient,friction coefficient,track gauge were taken as random variables,the stochastic dynamics simulation method was constructed and applied to the research to the evolution law with running mileage of dynamic index of CR400BF EMU. 展开更多
关键词 Vehicle system dynamics Stiffness of rotary arm nodes Anti-snaking damper damping Random variable
下载PDF
Uniqueness of Solution to Systems of Elliptic Operators and Application to Asymptotic Synchronization of Linear Dissipative Systems Ⅱ: Case of Multiple Feedback Dampings
15
作者 Tatsien LI Bopeng RAO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2022年第5期659-684,共26页
In this paper,the authors consider the asymptotic synchronization of a linear dissipative system with multiple feedback dampings.They first show that under the observability of a scalar equation,Kalman’s rank conditi... In this paper,the authors consider the asymptotic synchronization of a linear dissipative system with multiple feedback dampings.They first show that under the observability of a scalar equation,Kalman’s rank condition is sufficient for the uniqueness of solution to a complex system of elliptic equations with mixedobservations.The authors then establish a general theory on the asymptotic stability and the asymptotic synchronization for the corresponding evolutional system subjected to mixed dampings of various natures.Some classic models are presented to illustrate the field of applications of the abstract theory. 展开更多
关键词 Kalman rank condition UNIQUENESS Asymptotic synchronization Kelvin-Voigt damping
原文传递
基于Toll样受体通路与损伤相关分子模式分子炎症机制探讨扩张型心肌病中医药干预作用
16
作者 李军 姜春云 +1 位作者 解紫从 王雪娇 《河北中医》 2023年第10期1725-1727,1731,共4页
随着Toll样受体(TLRs)通路与损伤相关分子模式(DAMPs)分子炎症机制研究深入,其对炎性反应、自我免疫等人体生理代谢活动所需路径产生影响等证据表明,心肌炎性活动与此有关。炎症是防御机体内外病原造成组织损伤的主要机制。TLRs通路可... 随着Toll样受体(TLRs)通路与损伤相关分子模式(DAMPs)分子炎症机制研究深入,其对炎性反应、自我免疫等人体生理代谢活动所需路径产生影响等证据表明,心肌炎性活动与此有关。炎症是防御机体内外病原造成组织损伤的主要机制。TLRs通路可通过炎性反应参与心肌梗死后心脏肥大及心肌纤维化;DAMPs分子可促使心脏组织产生慢性炎性反应,从而导致心脏组织损伤、修复。近几年中医药的快速发展在治疗扩张型心肌病方面取得了重要突破并积累了丰富经验,而炎症机制可成为中医治疗扩张型心肌病的新靶点与新方向。 展开更多
关键词 TOLL样受体 DAMPS 心肌病 扩张型
下载PDF
Optimization on microstructure,mechanical properties and damping capacities of duplex structured Mg–8Li–4Zn–1Mn alloys 被引量:2
17
作者 Tongtong Cao Yong Zhu +7 位作者 Yuyang Gao Yan Yang Gang Zhou Xiaofei Cui Chen Wen Bin Jiang Xiaodong Peng Fusheng Pan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期949-958,共10页
Optimizing the mechanical properties and damping capacity of the duplex-structured Mg–Li–Zn–Mn alloy by tailoring the microstructure via hot extrusion was investigated.The results show that the Mg–8Li–4Zn–1Mn al... Optimizing the mechanical properties and damping capacity of the duplex-structured Mg–Li–Zn–Mn alloy by tailoring the microstructure via hot extrusion was investigated.The results show that the Mg–8Li–4Zn–1Mn alloy is mainly composed ofα-Mg,β-Li,Mg–Li–Zn and Mn phases.The microstructure of the test alloy is refined owing to dynamic recrystallization(DRX)during hot extrusion.After hot extrusion,the crushed precipitates are uniformly distributed in the test alloy.The yield strength(YS),ultimate tensile strength(UTS),and elongation(EL)of as-extruded alloy reach 156 MPa,208 MPa,and 32.3%,respectively,which are much better than that of as-cast alloy.Furthermore,the as-extruded and as-cast alloys both exhibit superior damping capacities,with the damping capacity(Q^(-1))of 0.030 and 0.033 at the strain amplitude of 2×10^(-3),respectively.The mechanical properties of the test alloy can be significantly improved by hot extrusion,whereas the damping capacities have no noticeable change,which indicates that the duplex-structured Mg–Li alloys with appropriate mechanical properties and damping properties can be obtained by alloying and hot extrusion. 展开更多
关键词 magnesium–lithium alloys hot extrusion MICROSTRUCTURE mechanical properties damping capacity
下载PDF
Effect of ground motion duration on inelastic displacement ratio of SDOF systems 被引量:1
18
作者 Saman Yaghmaei-Sabegh Sonia Daneshgari 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第2期423-439,共17页
In this paper,the influence of ground motion duration on the inelastic displacement ratio,C_(1),of highly damped SDOF systems is studied.For this purpose,two sets of spectrally equivalent long and short duration groun... In this paper,the influence of ground motion duration on the inelastic displacement ratio,C_(1),of highly damped SDOF systems is studied.For this purpose,two sets of spectrally equivalent long and short duration ground motion records were used in an analysis to isolate the effects of ground motion duration on.The effect of duration was evaluated for observed values of C_(1) by considering six ductility levels,and different damping and post-yield stiffness ratios.A new predictive equation of C_(1) also was developed for long and short duration records.Results of non-linear regression analysis of the current study provide an expression with which to quantify the duration effect.Based on the average values of estimated C_(1) ratios for long duration records divided by C_(1) for a short duration set,it is concluded that the maximum difference between long and short duration records occurs when the damping ratio is 0.3 and the post-yield stiffness ratio is equal to zero. 展开更多
关键词 inelastic displacement ratio long and short duration earthquakes highly damped SDOF systems DUCTILITY
下载PDF
巨噬细胞与肾移植 被引量:1
19
作者 郑龙 蔡明 《器官移植》 CAS CSCD 北大核心 2023年第5期643-648,共6页
肾移植是终末期肾病患者的最佳治疗方案,但移植肾远期存活仍是临床上面临的重要难题。肾缺血-再灌注损伤(IRI)和移植肾排斥反应被认为是影响移植肾远期存活的重要因素,受固有免疫和适应性免疫细胞调控。巨噬细胞是固有免疫细胞中一种,... 肾移植是终末期肾病患者的最佳治疗方案,但移植肾远期存活仍是临床上面临的重要难题。肾缺血-再灌注损伤(IRI)和移植肾排斥反应被认为是影响移植肾远期存活的重要因素,受固有免疫和适应性免疫细胞调控。巨噬细胞是固有免疫细胞中一种,可协助启动适应性免疫,分为M1型巨噬细胞、M2型巨噬细胞和调节性巨噬细胞。先前研究揭示M1型巨噬细胞加重肾IRI和急性T细胞介导的排斥反应(TCMR);而M2型巨噬细胞减轻肾IRI和急性TCMR,但与抗体介导的排斥反应(AMR)呈正相关;调节性巨噬细胞是巨噬细胞一种特殊亚群,可诱导移植免疫耐受,具有极大临床应用前景和基础科研价值。本文述评了巨噬细胞分型、巨噬细胞与肾IRI、移植肾排斥反应及调节性巨噬细胞与免疫耐受的关系,并分析了其可能作用机制,以期诱导巨噬细胞亚型改变或清除特定亚型巨噬细胞,进而改善移植预后及移植肾远期存活。 展开更多
关键词 肾移植 巨噬细胞 缺血-再灌注损伤 损伤相关分子模式(DAMP) Toll样受体(TLR) T细胞介导的排斥反应(TCMR) 抗体介导的排斥反应(AMR) 免疫耐受
下载PDF
Damping performance of SiC nanoparticles reinforced magnesium matrix composites processed by cyclic extrusion and compression
20
作者 Mahmoud Ebrahimi Li Zhang +2 位作者 Qudong Wang Hao Zhou Wenzhen Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1608-1617,共10页
This work dealt with the damping performance and its underlying mechanism in SiC nanoparticles reinforced AZ91D composite(SiC_(np)/AZ91D)processed by cyclic extrusion and compression(CEC).It was found that the CEC pro... This work dealt with the damping performance and its underlying mechanism in SiC nanoparticles reinforced AZ91D composite(SiC_(np)/AZ91D)processed by cyclic extrusion and compression(CEC).It was found that the CEC process significantly affects the damping performance of the composite due to alterations in the density of dislocations and grain boundaries in the matrix alloy.Although there would be dynamic precipitation of the Mg17Al12 phase during processing which increases the phase interface and limits the mobility of dislocations and grain boundaries.The results also showed that the damping capacity of 1%SiC_(np)/AZ91D composite continuously decreases with adding CEC pass number and it consistently increases with rising the applied temperature.Considering the first derivative of the tanδ-T curve,the dominant damping mechanism based on test temperature can be divided into three regions.These three regions are as follows(i)dislocation vibration of the weak pinning points(≤T_(cr)),(ii)dislocation vibration of the strong pinning points(T_(cr)∼T_(V)),and(iii)grain boundary/interface sliding(≥T_(V)) 展开更多
关键词 Metal matrix composite SiC nanoparticles Severe plastic deformation Temperature-dependent damping curves Damping mechanism
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部