期刊文献+
共找到4,009篇文章
< 1 2 201 >
每页显示 20 50 100
Combining reinforcement learning with mathematical programming:An approach for optimal design of heat exchanger networks
1
作者 Hui Tan Xiaodong Hong +4 位作者 Zuwei Liao Jingyuan Sun Yao Yang Jingdai Wang Yongrong Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期63-71,共9页
Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinea... Heat integration is important for energy-saving in the process industry.It is linked to the persistently challenging task of optimal design of heat exchanger networks(HEN).Due to the inherent highly nonconvex nonlinear and combinatorial nature of the HEN problem,it is not easy to find solutions of high quality for large-scale problems.The reinforcement learning(RL)method,which learns strategies through ongoing exploration and exploitation,reveals advantages in such area.However,due to the complexity of the HEN design problem,the RL method for HEN should be dedicated and designed.A hybrid strategy combining RL with mathematical programming is proposed to take better advantage of both methods.An insightful state representation of the HEN structure as well as a customized reward function is introduced.A Q-learning algorithm is applied to update the HEN structure using theε-greedy strategy.Better results are obtained from three literature cases of different scales. 展开更多
关键词 Heat exchanger network reinforcement learning Mathematical programming Process design
下载PDF
Improving the design of reinforcing frames by simulating the arch and peltate venation structures
2
作者 XING Deng-hai CHEN Wu-yi 《Journal of Beijing Institute of Technology》 EI CAS 2014年第1期29-36,共8页
Based on the analyses on arch and peltate venation structures, the design of reinforcing frames was improved. First, distribution rules of the arch structure were summarized. According to the load condition and the st... Based on the analyses on arch and peltate venation structures, the design of reinforcing frames was improved. First, distribution rules of the arch structure were summarized. According to the load condition and the structure of the frame, a mechanical model of arch structure was devel- oped, and two solutions for the model were analyzed and compared with each other. Through the a- nalysis, application rules of arch structure for improving the design were obtained. Then, distribu- tion rules of peltate venation structure were summarized. By using the same method, application rules of peltate venation structure for improving the design were also obtained. Finally, mechanical problem of the frame was described, and rib arrangement of the frame was redesigned. A parameter optimization for the widths of ribs in bionic arrangement was also carried out to accomplish the im- proving design. Comparison between bionic and conventional reinforcing frames shows that the weight is reduced by as much as 15.3%. 展开更多
关键词 improving design lightweight reinforcing frame arch structure peltate venation bionic design
下载PDF
Coal pillar design when considered a reinforcement problem rather than a suspension problem 被引量:2
3
作者 Russell Frith Guy Reed 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第1期11-19,共9页
Current coal pillar design is the epitome of suspension design.A defined weight of unstable overburden material is estimated, and the dimensions of the pillars left behind are based on holding up that material to a pr... Current coal pillar design is the epitome of suspension design.A defined weight of unstable overburden material is estimated, and the dimensions of the pillars left behind are based on holding up that material to a prescribed factor of safety.In principle, this is no different to early roadway roof support design.However, for the most part, roadway roof stabilisation has progressed to reinforcement, whereby the roof strata is assisted in supporting itself.This is now the mainstay of efficient and effective underground coal production.Suspension and reinforcement are fundamentally different in roadway roof stabilisation and lead to substantially different requirements in terms of support hardware characteristics and their application.In suspension, the primary focus is the total load-bearing capacity of the installed support and ensuring that it is securely anchored outside of the unstable roof mass.In contrast, reinforcement recognises that roof de-stabilisation is a gradational process with ever-increasing roof displacement magnitude leading to ever-reducing stability.Key roof support characteristics relate to such issues as system stiffness, the location and pattern of support elements and mobilising a defined thickness of the immediate roof to create(or build) a stabilising strata beam.The objective is to ensure that horizontal stress is maintained at a level that prevents mass roof collapse.This paper presents a prototype coal pillar and overburden system representation where reinforcement, rather than suspension, of the overburden is the stabilising mechanism via the action of in situ horizontal stresses.Established roadway roof reinforcement principles can potentially be applied to coal pillar design under this representation.The merit of this is evaluated according to failed pillar cases as found in a series of published databases.Based on the findings, a series of coal pillar system design considerations for bord and pillar type mine workings are provided.This potentially allows a more flexible approach to coal pillar sizing within workable mining layouts, as compared to common industry practice of a single design factor of safety(Fo S) under defined overburden dead-loading to the exclusion of other relevant overburden stabilising influences. 展开更多
关键词 Coal PILLAR design OVERBURDEN stability Rock reinforcEMENT Bord and PILLAR mining
下载PDF
Energy-Efficient UAV Trajectory Design for Backscatter Communication: A Deep Reinforcement Learning Approach 被引量:5
4
作者 Yiwen Nie Junhui Zhao +2 位作者 Jun Liu Jing Jiang Ruijin Ding 《China Communications》 SCIE CSCD 2020年第10期129-141,共13页
Recently,backscatter communication(BC)has been introduced as a green paradigm for Internet of Things(IoT).Meanwhile,unmanned aerial vehicles(UAVs)can serve as aerial base stations(BSs)to enhance the performance of BC ... Recently,backscatter communication(BC)has been introduced as a green paradigm for Internet of Things(IoT).Meanwhile,unmanned aerial vehicles(UAVs)can serve as aerial base stations(BSs)to enhance the performance of BC system thanks to their high mobility and flexibility.In this paper,we investigate the problem of energy efficiency(EE)for an energy-limited backscatter communication(BC)network,where backscatter devices(BDs)on the ground harvest energy from the wireless signal of a flying rotary-wing quadrotor.Specifically,we first reformulate the EE optimization problem as a Markov decision process(MDP)and then propose a deep reinforcement learning(DRL)algorithm to design the UAV trajectory with the constraints of the BD scheduling,the power reflection coefficients,the transmission power,and the fairness among BDs.Simulation results show the proposed DRL algorithm achieves close-to-optimal performance and significant EE gains compared to the benchmark schemes. 展开更多
关键词 unmanned aerial vehicle(UAV) trajectory design backscatter communication deep reinforcement learning ENERGY-EFFICIENT
下载PDF
Shape design of the reinforcement for bending load-carrying capacity of under-matched butt joint under four-point bending load 被引量:1
5
作者 王佳杰 杨建国 +3 位作者 张敬强 董志波 方洪渊 刚铁 《China Welding》 EI CAS 2012年第3期50-54,共5页
To improve the bending load-carrying capacity ( BLCC) of under-matched butt joint under four-point bending load in the elastic stage, the shape design of the reinforcement is studied based on the theoretics of mecha... To improve the bending load-carrying capacity ( BLCC) of under-matched butt joint under four-point bending load in the elastic stage, the shape design of the reinforcement is studied based on the theoretics of mechanics of materials. The concept, criterion, realization condition and design proposal of equal bending load-carrying capacity (EBLCC) are put forward. The theoretical analysis results have been verified by the finite element method. The simulation results are coincident basically with the ones of theoretical analysis. The research results show that the shape design of the reinforcement of EBLCC can improve BLCC of under-matched butt joint and the unilateral-side type reinforcement can replace double-side symmetry 展开更多
关键词 under-matched joint equal bending load-carrying capacity shape design of the reinforcement finite elementmethod
下载PDF
Study on determining of reinforced concrete false roof strength and design of reinforcement based on reliability theory 被引量:2
6
作者 Fan Wenlu Li Xibing Hu Guohong 《Engineering Sciences》 EI 2012年第5期65-70,共6页
Study on efficient mining of the steep incline and fractured ore-bodies in Yongshaba mine of Guizhou Kailin Group shows that ore-body is fractured and difficult to support the roadways in-vein.After research of the ac... Study on efficient mining of the steep incline and fractured ore-bodies in Yongshaba mine of Guizhou Kailin Group shows that ore-body is fractured and difficult to support the roadways in-vein.After research of the actual conditions about the ore-bodies,we have made the initial decision to adopt reconstruction of roof downward sublevel cut-and-fill mining.The men work safely under the false roof supporting the top plate.However,the difficult problem is how to determine the strength of the false roof.In this case,the method based on reliability theory has been put forward.Combined with elastic mechanics and field practice,when practical value of reliable probability is 90 %,the value of the false roof strength has been calculated,and the study shows that stope span greatly influences the false roof strength.With the strength of artificial roof,the reasonable reinforcement design ensures the false roof which can supply the demand of strength under large span and load. 展开更多
关键词 steep and fractured ore-bodies reinforced concrete false roof downward sublevel cut-and-fill reliability the-ory stope span reinforcement design
下载PDF
Multi-Agent Few-Shot Meta Reinforcement Learning for Trajectory Design and Channel Selection in UAV-Assisted Networks 被引量:1
7
作者 Shiyang Zhou Yufan Cheng +1 位作者 Xia Lei Huanhuan Duan 《China Communications》 SCIE CSCD 2022年第4期166-176,共11页
Unmanned aerial vehicle(UAV)-assisted communications have been considered as a solution of aerial networking in future wireless networks due to its low-cost, high-mobility, and swift features. This paper considers a U... Unmanned aerial vehicle(UAV)-assisted communications have been considered as a solution of aerial networking in future wireless networks due to its low-cost, high-mobility, and swift features. This paper considers a UAV-assisted downlink transmission,where UAVs are deployed as aerial base stations to serve ground users. To maximize the average transmission rate among the ground users, this paper formulates a joint optimization problem of UAV trajectory design and channel selection, which is NP-hard and non-convex. To solve the problem, we propose a multi-agent deep Q-network(MADQN) scheme.Specifically, the agents that the UAVs act as perform actions from their observations distributively and share the same reward. To tackle the tasks where the experience is insufficient, we propose a multi-agent meta reinforcement learning algorithm to fast adapt to the new tasks. By pretraining the tasks with similar distribution, the learning model can acquire general knowledge. Simulation results have indicated the MADQN scheme can achieve higher throughput than fixed allocation. Furthermore, our proposed multiagent meta reinforcement learning algorithm learns the new tasks much faster compared with the MADQN scheme. 展开更多
关键词 UAV trajectory design channel selection MADQN meta reinforcement learning
下载PDF
Deep Reinforcement Learning for Multi-Phase Microstructure Design 被引量:1
8
作者 Jiongzhi Yang Srivatsa Harish +3 位作者 Candy Li Hengduo Zhao Brittney Antous Pinar Acar 《Computers, Materials & Continua》 SCIE EI 2021年第7期1285-1302,共18页
This paper presents a de-novo computational design method driven by deep reinforcement learning to achieve reliable predictions and optimum properties for periodic microstructures.With recent developments in 3-D print... This paper presents a de-novo computational design method driven by deep reinforcement learning to achieve reliable predictions and optimum properties for periodic microstructures.With recent developments in 3-D printing,microstructures can have complex geometries and material phases fabricated to achieve targeted mechanical performance.These material property enhancements are promising in improving the mechanical,thermal,and dynamic performance in multiple engineering systems,ranging from energy harvesting applications to spacecraft components.The study investigates a novel and efficient computational framework that integrates deep reinforcement learning algorithms into finite element-based material simulations to quantitatively model and design 3-D printed periodic microstructures.These algorithms focus on improving the mechanical and thermal performance of engineering components by optimizing a microstructural architecture to meet different design requirements.Additionally,the machine learning solutions demonstrated equivalent results to the physics-based simulations while significantly improving the computational time efficiency.The outcomes of the project show promise to the automation of the design and manufacturing of microstructures to enable their fabrication in large quantities with the utilization of the 3-D printing technology. 展开更多
关键词 Deep learning reinforcement learning microstructure design
下载PDF
Recent Progress in Reinforcement Learning and Adaptive Dynamic Programming for Advanced Control Applications 被引量:4
9
作者 Ding Wang Ning Gao +2 位作者 Derong Liu Jinna Li Frank L.Lewis 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期18-36,共19页
Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and ... Reinforcement learning(RL) has roots in dynamic programming and it is called adaptive/approximate dynamic programming(ADP) within the control community. This paper reviews recent developments in ADP along with RL and its applications to various advanced control fields. First, the background of the development of ADP is described, emphasizing the significance of regulation and tracking control problems. Some effective offline and online algorithms for ADP/adaptive critic control are displayed, where the main results towards discrete-time systems and continuous-time systems are surveyed, respectively.Then, the research progress on adaptive critic control based on the event-triggered framework and under uncertain environment is discussed, respectively, where event-based design, robust stabilization, and game design are reviewed. Moreover, the extensions of ADP for addressing control problems under complex environment attract enormous attention. The ADP architecture is revisited under the perspective of data-driven and RL frameworks,showing how they promote ADP formulation significantly.Finally, several typical control applications with respect to RL and ADP are summarized, particularly in the fields of wastewater treatment processes and power systems, followed by some general prospects for future research. Overall, the comprehensive survey on ADP and RL for advanced control applications has d emonstrated its remarkable potential within the artificial intelligence era. In addition, it also plays a vital role in promoting environmental protection and industrial intelligence. 展开更多
关键词 Adaptive dynamic programming(ADP) advanced control complex environment data-driven control event-triggered design intelligent control neural networks nonlinear systems optimal control reinforcement learning(RL)
下载PDF
Optimal seismic design of reinforced concrete structures under timehistory earthquake loads using an intelligent hybrid algorithm
10
作者 Sadjad Gharehbaghi Mohsen Khatibinia 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期97-109,共13页
A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismi... A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismic design codes, the average time-history responses (ATHR) of structure is required. This paper focuses on the optimal seismic design of reinforced concrete (RC) structures against ten earthquake records using a hybrid of particle swarm optimization algorithm and an intelligent regression model (IRM). In order to reduce the computational time of optimization procedure due to the computational efforts of time-history analyses, IRM is proposed to accurately predict ATHR of structures. The proposed IRM consists of the combination of the subtractive algorithm (SA), K-means clustering approach and wavelet weighted least squares support vector machine (WWLS-SVM). To predict ATHR of structures, first, the input-output samples of structures are classified by SA and K-means clustering approach. Then, WWLS-SVM is trained with few samples and high accuracy for each cluster. 9- and 18-storey RC frames are designed optimally to illustrate the effectiveness and practicality of the proposed IRM. The numerical results demonstrate the efficiency and computational advantages of IRM for optimal design of structures subjected to time-history earthquake loads. 展开更多
关键词 optimal seismic design reinforced concrete frames earthquake loads particle swarm optimization intelligent regression model support vector machine
下载PDF
Finite Element Method for Design of Reinforced Concrete Offshore Platforms
11
作者 Song Yupu and Wang Jian Associate Professor, Dept. of Civil Engineering, Dalian University of Technology, Dalian Lecturer, Dept. of Civil Engineering, Dalian University of Technology, Dalian 《China Ocean Engineering》 SCIE EI 1992年第1期27-36,共10页
A design method of reinforced concrete (R. C.) offshore platforms with nonlinear finite element analysis is proposed. According to the method, a computer program is developed. In this program nonlinear constitutive re... A design method of reinforced concrete (R. C.) offshore platforms with nonlinear finite element analysis is proposed. According to the method, a computer program is developed. In this program nonlinear constitutive relationships and strength criteria of concrete and steel bars are included, and the progressive cracking and crushing of the concrete are taken into account. Based on the stress distribution obtained by the nonlinear finite element analysis, the amount of reinforcement in the control sections can be computed and adjusted automatically by the program to satisfy the requirement of the design. The amount of reinforcement required in the control sections, which are obtained with the nonlinear finite element analysis, is agreeable to that obtained in the experiment. This shows that the design method of R. C. offshore platform with the nonlinear finite element method proposed by the authors is reliable for practical use. 展开更多
关键词 finite element method reinforced concrete offshore platform design method reinforcEMENT
下载PDF
Research on stability design of a bar-reinforced spherical bulkhead
12
作者 YAO Xiong-liang LIU Xiang-dong 《Journal of Marine Science and Application》 2007年第1期1-8,共8页
In this paper, the stability of a concave spherical stem bulkhead under the pumping load when still lying at the slipway is analyzed. The stability of the spherical stem bulkhead with different shell thickness and rei... In this paper, the stability of a concave spherical stem bulkhead under the pumping load when still lying at the slipway is analyzed. The stability of the spherical stem bulkhead with different shell thickness and reinforcing forms is discussed. According to the results of stability analysis, the optimization design of the spherical stem bulkhead stability is performed. On the basis of considering the machining technical requirements of the bulkhead, a rational design of the spherical stem bulkhead structure is obtained. This paper has a certain value to the design of submarine's spherical stem bulkhead. 展开更多
关键词 spherical bulkhead STABILITY reinforcing form optimization design
下载PDF
Trajectory Design for UAV-Enabled Maritime Secure Communications:A Reinforcement Learning Approach
13
作者 Jintao Liu Feng Zeng +3 位作者 Wei Wang Zhichao Sheng Xinchen Wei Kanapathippillai Cumanan 《China Communications》 SCIE CSCD 2022年第9期26-36,共11页
This paper investigates an unmanned aerial vehicle(UAV)-enabled maritime secure communication network,where the UAV aims to provide the communication service to a legitimate mobile vessel in the presence of multiple e... This paper investigates an unmanned aerial vehicle(UAV)-enabled maritime secure communication network,where the UAV aims to provide the communication service to a legitimate mobile vessel in the presence of multiple eavesdroppers.In this maritime communication networks(MCNs),it is challenging for the UAV to determine its trajectory on the ocean,since it cannot land or replenish energy on the sea surface,the trajectory should be pre-designed before the UAV takes off.Furthermore,the take-off location of the UAV and the sea lane of the vessel may be random,which leads to a highly dynamic environment.To address these issues,we propose two reinforcement learning schemes,Q-learning and deep deterministic policy gradient(DDPG)algorithms,to solve the discrete and continuous UAV trajectory design problem,respectively.Simulation results are provided to validate the effectiveness and superior performance of the proposed reinforcement learning schemes versus the existing schemes in the literature.Additionally,the proposed DDPG algorithm converges faster and achieves higher utilities for the UAV,compared to the Q-learning algorithm. 展开更多
关键词 maritime communication networks(MCNs) unmanned aerial vehicles(UAV) reinforcement learning physical layer security trajectory design
下载PDF
Studies on Seismic Identification and Reinforcement Design of Building Structures
14
作者 Ying Liu 《Open Journal of Civil Engineering》 2018年第3期292-300,共9页
China is a country with many earthquakes. Seismic safety monitoring and building earthquake-proofing technique are important means to protect the safety of people’s property in China. However, up to now, China’s sei... China is a country with many earthquakes. Seismic safety monitoring and building earthquake-proofing technique are important means to protect the safety of people’s property in China. However, up to now, China’s seismic reinforcement and identification technology is still not mature enough. In particular, the 2008 Wenchuan earthquake caused great loss of life and safety to the Chinese people. This paper, takes seismic identification and reinforcement technology of building structures as the research object and summarizes the main methods of building structure seismic resistance in China. This paper is based on an in-depth analysis of the main seismic reinforcement and identification techniques in China, deeply analyzes the crux of anti-seismic and reinforcement of building structure combining with the current building seismic reinforcement typical cases, and puts forward some reasonable suggestions and improvement methods for the future development of building seismic identification and reinforcement design. 展开更多
关键词 BUILDING Structure EARTHQUAKE PROOF IDENTIFICATION reinforcEMENT design
下载PDF
Advanced Welding Technology for Highly Stressable Multi-Material Designs with Fiber-Reinforced Plastics and Metals
15
作者 Holger Seidlitz Sebastian Fritzsche +1 位作者 Marcello Ambrosio Alexander Kloshek 《Open Journal of Composite Materials》 2017年第3期166-177,共12页
Organic sheets made out of fiber-reinforced thermoplastics are able to make a crucial contribution to increase the lightweight potential of a design. They show high specific strength- and stiffness properties, good da... Organic sheets made out of fiber-reinforced thermoplastics are able to make a crucial contribution to increase the lightweight potential of a design. They show high specific strength- and stiffness properties, good damping characteristics and recycling capabilities, while being able to show a higher energy absorption capacity than comparable metal constructions. Nowadays, multi-material designs are an established way in the automotive industry to combine the benefits of metal and fiber-reinforced plastics. Currently used technologies for the joining of organic sheets and metals in large-scale production are mechanical joining technologies and adhesive technologies. Both techniques require large overlapping areas that are not required in the design of the part. Additionally, mechanical joining is usually combined with “fiber-destroying” pre-drilling and punching processes. This will disturb the force flux at the joining location by causing unwanted fiber- and inter-fiber failure and inducing critical notch stresses. Therefore, the multi-material design with fiber-reinforced thermoplastics and metals needs optimized joining techniques that don’t interrupt the force flux, so that higher loads can be induced and the full benefit of the FRP material can be used. This article focuses on the characterization of a new joining technology, based on the Cold Metal Transfer (CMT) welding process that allows joining of organic sheets and metals in a load path optimized way, with short cycle times. This is achieved by redirecting the fibers around the joining area by the insertion of a thin metal pin. The path of the fibers will be similar to paths of fibers inside structures found in nature, e.g. a knothole inside of a tree. As a result of the bionic fiber design of the joint, high joining strengths can be achieved. The increase of the joint strength compared to blind riveting was performed and proven with stainless steel and orthotropic reinforced composites in shear-tests based on the DIN EN ISO 14273. Every specimen joined with the new CMT Pin joining technology showed a higher strength than specimens joined with one blind rivet. Specimens joined with two or three pin rows show a higher strength than specimens joined with two blind rivets. 展开更多
关键词 Multi-Material design FIBER reinforcED PLASTICS LIGHTWEIGHT Automotive Structures Joining
下载PDF
Design and construction of high and large span cast-in-place reinforced concrete cantilever flowering frame beam
16
作者 WANG Rui ZHEN Liang +2 位作者 WAN Chao WU Jing SHEN Yan-jun 《Journal of Civil Engineering and Architecture》 2009年第5期58-62,共5页
The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guarante... The high and large span cast-in-place reinforced concrete cantilever structure of the office building of some court, which is located I-steel at the cantilever and used steel pipe scaffold as the support, has guaranteed the frame body and structure security by the frame body calculating, on-site test and reasonable construction order. 展开更多
关键词 cast-in-place reinforced concrete support of cantilever structure high and long span design and construction
下载PDF
Design and Construction Technology of Prefabricated Reinforced Concrete Slab Culverts
17
作者 Qiang Yang 《Journal of World Architecture》 2023年第5期52-59,共8页
Compared with traditional cast-in-situ concrete slab culverts,prefabricated reinforced concrete slab culverts can be produced more quickly and has strong quality controllability,strong earthquake resistance,and repeat... Compared with traditional cast-in-situ concrete slab culverts,prefabricated reinforced concrete slab culverts can be produced more quickly and has strong quality controllability,strong earthquake resistance,and repeatability.They will be the primary production method of slab culverts in the future.This article offers a comprehensive review of the design and construction technology associated with prefabricated reinforced concrete slab culverts.The objective is to provide a valuable reference for related enterprises,enhance the quality of design and construction in precast pile configuration,and,in turn,contribute to the advancement of construction projects within our country. 展开更多
关键词 Slab culvert Prefabricated reinforced concrete design points Construction technology
下载PDF
Multi-Scale Design and Optimization of Composite Material Structure for Heavy-Duty Truck Protection Device
18
作者 Yanhui Zhang Lianhua Ma +3 位作者 Hailiang Su Jirong Qin Zhining Chen Kaibiao Deng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1961-1980,共20页
In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,t... In this paper,to present a lightweight-developed front underrun protection device(FUPD)for heavy-duty trucks,plain weave carbon fiber reinforced plastic(CFRP)is used instead of the original high-strength steel.First,the mechanical and structural properties of plain carbon fiber composite anti-collision beams are comparatively analyzed from a multi-scale perspective.For studying the design capability of carbon fiber composite materials,we investigate the effects of TC-33 carbon fiber diameter(D),fiber yarn width(W)and height(H),and fiber yarn density(N)on the front underrun protective beam of carbon fiber compositematerials.Based on the investigation,a material-structure matching strategy suitable for the front underrun protective beam of heavy-duty trucks is proposed.Next,the composite material structure is optimized by applying size optimization and stack sequence optimization methods to obtain the higher performance carbon fiber composite front underrun protection beam of commercial vehicles.The results show that the fiber yarn height(H)has the greatest influence on the protective beam,and theH1matching scheme for the front underrun protective beamwith a carbon fiber composite structure exhibits superior performance.The proposed method achieves a weight reduction of 55.21% while still meeting regulatory requirements,which demonstrates its remarkable weight reduction effect. 展开更多
关键词 Structural optimization front underrun protection device carbon fiber reinforced plastic multi-scale model lightweight design
下载PDF
Materials Design of Microstructure in Grain Boundary and Second Phase Particles 被引量:4
19
作者 Yaping ZONG and Liang ZUODepartment of Materials Science and Engineering, Northeastern University, Shenyang 110004, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第2期97-101,共5页
A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening... A concept of microstructure design for materials or materials microstructure engineering is proposed. The argument was suggested based on literature review and. some our new research work on second phase strengthening mechanisms and mechanical property modeling of a particulate reinforced metal matrix composite. Due to development of computer technology, it is possible now for us to establish the relationship between microstructures and properties systematically and quantitatively by analytical and numerical modeling in the research scope of computerization materials. Discussions and examples on intellectual optimization of microstructure are presented on two aspects: grain boundary engineering and optimal geometry of particulate reinforcements in two-phase materials. 展开更多
关键词 Microstructure design Particulate reinforcement Grain boundary engineering Strengthening mechanism Eshelby approach Numerical modelling
下载PDF
Discounted Iterative Adaptive Critic Designs With Novel Stability Analysis for Tracking Control 被引量:9
20
作者 Mingming Ha Ding Wang Derong Liu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1262-1272,共11页
The core task of tracking control is to make the controlled plant track a desired trajectory.The traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of t... The core task of tracking control is to make the controlled plant track a desired trajectory.The traditional performance index used in previous studies cannot eliminate completely the tracking error as the number of time steps increases.In this paper,a new cost function is introduced to develop the value-iteration-based adaptive critic framework to solve the tracking control problem.Unlike the regulator problem,the iterative value function of tracking control problem cannot be regarded as a Lyapunov function.A novel stability analysis method is developed to guarantee that the tracking error converges to zero.The discounted iterative scheme under the new cost function for the special case of linear systems is elaborated.Finally,the tracking performance of the present scheme is demonstrated by numerical results and compared with those of the traditional approaches. 展开更多
关键词 Adaptive critic design adaptive dynamic programming(ADP) approximate dynamic programming discrete-time nonlinear systems reinforcement learning stability analysis tracking control value iteration(VI)
下载PDF
上一页 1 2 201 下一页 到第
使用帮助 返回顶部