Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. H...Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.展开更多
Traditional space group determination methods are all in reciprocal space,which involves ambiguous identification on some space groups which have glide plane and screw axes.The novel strategy herein for space group de...Traditional space group determination methods are all in reciprocal space,which involves ambiguous identification on some space groups which have glide plane and screw axes.The novel strategy herein for space group determination in real space is based on the atom resolution high angle annular dark field(HAADF)technology.Three HAADF images in three specific crystal zone axes are needed at most.The proposed strategy for space group determination is easy and effective.展开更多
Laves phases,with the topologically close-packed structure and a chemical formula of Ab_(2),constitute the largest single class of intermetallics.Planar defects in Laves phases are widely investigated,especially for s...Laves phases,with the topologically close-packed structure and a chemical formula of Ab_(2),constitute the largest single class of intermetallics.Planar defects in Laves phases are widely investigated,especially for stacking behavior transformations through synchroshear.Here,we report the coexistence of C14,C36 and C15 structures in MgZn_2 precipitates by using atomic resolution scanning transmission electron microscopy,verifying the previously predicted Laves phase transformation sequence of C14→C36→C15 also applies to MgZn_2.One type of stacking fault couple in precipitates has been found to alone reduce the lattice mismatch with matrix,while some other stacking fault couples need to self-accommodate with irregular planar defects(rhombic units and flattened hexagonal units),or with five-fold symmetry structures to relieve the strain concentration.Precipitates thus grow towards an equiaxed or even round morphology,rather than the plate morphology as conventionally believed.Molecular dynamics calculations are performed to support our analysis.These findings reveal the principles governing the concurrent occurrence of various defects in laves structures,acting as an update of the widely accepted perception of random occurrence of defects during crystal growth.展开更多
基金supported by the National Basic Research Program of China(Grant No.2014CB921002)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB07030200)the National Natural Science Foundation of China(Grant Nos.51522212,51421002,and 51672307)
文摘Scanning transmission electron microscopy(STEM) has been shown as powerful tools for material characterization,especially after the appearance of aberration-corrector which greatly enhances the resolution of STEM. High angle annular dark field(HAADF) and annular bright field(ABF) imaging of the aberration-corrected STEM are widely used due to their high-resolution capabilities and easily interpretable image contrasts. However, HAADF mode of the STEM is still limited in detecting light elements due to the weak electron-scattering power. ABF mode of the STEM could detect light and heavy elements simultaneously, providing unprecedented opportunities for probing unknown structures of materials. Atomiclevel structure investigation of materials has been achieved by means of these imaging modes, which is invaluable in many fields for either improving properties of materials or developing new materials. This paper aims to provide a introduction of HAADF and ABF imaging techniques and reviews their applications in characterization of cathode materials, study of electrochemical reaction mechanisms, and exploring the effective design of lithium-ion batteries(LIBs). The future prospects of the STEM are also discussed.
基金supported by the National Natural Science Foundation of China(Nos.11904307 and 52001268)the Natu-ral Science Foundation of Hunan province(Nos.2019JJ50576 and 2021JJ40539)the Foundation of Education Bureau of Hunan Province(No.20C1797).
文摘Traditional space group determination methods are all in reciprocal space,which involves ambiguous identification on some space groups which have glide plane and screw axes.The novel strategy herein for space group determination in real space is based on the atom resolution high angle annular dark field(HAADF)technology.Three HAADF images in three specific crystal zone axes are needed at most.The proposed strategy for space group determination is easy and effective.
基金supported financially by the National Natural Science Foundation of China(Nos.51820105001,51771234,51531009 and 51790482)the Fundamental Research Funds for the Central Universities(No.GK201803016)。
文摘Laves phases,with the topologically close-packed structure and a chemical formula of Ab_(2),constitute the largest single class of intermetallics.Planar defects in Laves phases are widely investigated,especially for stacking behavior transformations through synchroshear.Here,we report the coexistence of C14,C36 and C15 structures in MgZn_2 precipitates by using atomic resolution scanning transmission electron microscopy,verifying the previously predicted Laves phase transformation sequence of C14→C36→C15 also applies to MgZn_2.One type of stacking fault couple in precipitates has been found to alone reduce the lattice mismatch with matrix,while some other stacking fault couples need to self-accommodate with irregular planar defects(rhombic units and flattened hexagonal units),or with five-fold symmetry structures to relieve the strain concentration.Precipitates thus grow towards an equiaxed or even round morphology,rather than the plate morphology as conventionally believed.Molecular dynamics calculations are performed to support our analysis.These findings reveal the principles governing the concurrent occurrence of various defects in laves structures,acting as an update of the widely accepted perception of random occurrence of defects during crystal growth.