Dark matter(DM)is a major constituent of the Universe.However,no definite evidence of DM particles(denoted as“χ”)has been found in DM direct detection(DD)experiments to date.There is a novel concept of detectingχf...Dark matter(DM)is a major constituent of the Universe.However,no definite evidence of DM particles(denoted as“χ”)has been found in DM direct detection(DD)experiments to date.There is a novel concept of detectingχfrom evaporating primordial black holes(PBHs).We search forχemitted from PBHs by investigating their interaction with target electrons.The examined PBH masses range from 1×10^(15)to 7×10^(16)g under the current limits of PBH abundance fPBH.Using 205.4 kg·day data obtained from the CDEX-10 experiment conducted in the China Jinping Underground Laboratory,we exclude theχ-electron(χ-e)elastic-scattering cross sectionσ_(χe)~5×10^(-29)cm^(2)forχwith a mass■keV from our results.With the higher radiation background but lower energy threshold(160 eV),CDEX-10 fills a part of the gap in the previous work.If(m_(χ),σ_(χe))can be determined in the future,DD experiments are expected to impose strong constraints on fPBHfor large MPBHs.展开更多
Hypersphere World-Universe Model (WUM) is an alternative to the prevailing Big Bang Model (BBM). WUM and BBM are principally different Models: 1) Instead of the Initial Singularity with the infinite energy density and...Hypersphere World-Universe Model (WUM) is an alternative to the prevailing Big Bang Model (BBM). WUM and BBM are principally different Models: 1) Instead of the Initial Singularity with the infinite energy density and the extremely rapid expansion of the space (Inflation) in BBM;in WUM, there was a Fluctuation (4D Nucleus of the World with an extrapolated radius equals to a basic unit of size <i>a</i>) in the Eternal Universe with a finite extrapolated energy density (four orders of magnitude less than the nuclear density) and a finite expansion of the Nucleus in its fourth spatial dimension with speed <i>c</i> that is the gravitodynamic constant;2) Instead of the Infinite Homogeneous and Isotropic Universe around the Initial Singularity in BBM;in WUM, the 3D Finite Boundless World (the Hypersphere of the 4D Nucleus) presents a Patchwork Quilt of different Luminous Superclusters (≳10<sup>3</sup>), which emerged in various places of the World at different Cosmological times. The Medium of the World is Homogeneous and Isotropic. The distribution of Macroobjects in the World is spatially Inhomogeneous and Anisotropic and temporally Non-simultaneous. The Absolute Age of the entire World (determined by the parameters of the Medium) is 14.22 Gyr.展开更多
The developed Hypersphere World-Universe Model (WUM) is consistent with all Concepts of the World [1]. In WUM, we postulate the principal role of Angular Momentum and Dark Matter in Cosmological theories of the World....The developed Hypersphere World-Universe Model (WUM) is consistent with all Concepts of the World [1]. In WUM, we postulate the principal role of Angular Momentum and Dark Matter in Cosmological theories of the World. The most widely accepted model of Solar System formation, known as the Nebular hypothesis, does not solve the Angular Momentum problem—why is the orbital momentum of Jupiter larger than rotational momentum of the Sun? WUM is the only cosmological model in existence that is consistent with this Fundamental Law. The Nebular hypothesis does not solve Internal Heating and Diversity problems for all Planets and Moons in Solar system—why the actual mean surface temperature of them is higher than their effective temperature calculated based on the Sun’s heat for them and how could each one be so different if all of them came from the same nebula? The proposed concept of Dark Matter Reactors in Cores of all gravitationally-rounded Macroobjects successfully resolves these problems.展开更多
The high energy cosmic-radiation detection(HERD)facility is planned to launch in 2027 and scheduled to be installed on the China Space Station.It serves as a dark matter particle detector,a cosmic ray instrument,and a...The high energy cosmic-radiation detection(HERD)facility is planned to launch in 2027 and scheduled to be installed on the China Space Station.It serves as a dark matter particle detector,a cosmic ray instrument,and an observatory for high-energy gamma rays.A transition radiation detector placed on one of its lateral sides serves dual purpose,(ⅰ)calibrating HERD's electromagnetic calorimeter in the TeV energy range,and(ⅱ)serving as an independent detector for high-energy gamma rays.In this paper,the prototype readout electronics design of the transition radiation detector is demonstrated,which aims to accurately measure the charge of the anodes using the SAMPA application specific integrated circuit chip.The electronic performance of the prototype system is evaluated in terms of noise,linearity,and resolution.Through the presented design,each electronic channel can achieve a dynamic range of 0–100 fC,the RMS noise level not exceeding 0.15 fC,and the integral nonlinearity was<0.2%.To further verify the readout electronic performance,a joint test with the detector was carried out,and the results show that the prototype system can satisfy the requirements of the detector's scientific goals.展开更多
Hypersphere World-Universe Model (WUM) envisions Matter carried from the Universe into the World from the fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is a byproduct of Dark Matter (DM) se...Hypersphere World-Universe Model (WUM) envisions Matter carried from the Universe into the World from the fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is a byproduct of Dark Matter (DM) self-annihilation. WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) and Luminous Epoch (ever since for 13.77 billion years). Big Bang discussed in Standard Cosmology (SC) is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and self-annihilation of DMPs. WUM solves a number of physical problems in SC and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded objects in Solar system and their Internal Heating. Model makes predictions pertaining to Rest Energies of DMPs, proposes New Type of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.展开更多
This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, ev...This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.展开更多
Dirac’s themes were the unity and beauty of Nature. He identified three revolutions in modern physics: Relativity, Quantum Mechanics and Cosmology. In his opinion: “<i>The new cosmology will probably turn out ...Dirac’s themes were the unity and beauty of Nature. He identified three revolutions in modern physics: Relativity, Quantum Mechanics and Cosmology. In his opinion: “<i>The new cosmology will probably turn out to be philosophically even more revolutionary than relativity or the quantum theory, perhaps looking forward to the current bonanza in cosmology, where precise observations on some of the most distant objects in the universe are shedding light on the nature of reality, on the nature of matter and on the most advanced quantum theories</i>” [Farmelo, G. (2009) The Strangest Man. The Hidden Life of Paul Dirac, Mystic of the Atom. Basic Books, Britain, 661 p]. In 1937, Paul Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”;and later added the notion of continuous creation of Matter in the World. The developed Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of matter creation. In this paper, we show that WUM is a natural continuation of Classical Physics and it can already serve as a basis for a New Cosmology proposed by Paul Dirac.展开更多
The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM)...The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM). WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) when only Dark Matter (DM) Macroobjects (MOs) existed, and Luminous Epoch (ever since for 13.77 billion years) when Luminous MOs emerged due to Rotational Fission of Overspinning DM Superclusters’ Cores and self-annihilation of Dark Matter Particles (DMPs). WUM envisions that DM is created by the Universe in the 4D Nucleus of the World. Dark Matter Particles (DMPs) carry new DM into the 3D Hypersphere World. Luminous Matter is a byproduct of DMPs self-annihilation. By analogy with 3D ball, which has two-dimensional sphere surface (that has surface energy), we can imagine that the 3D Hypersphere World has a “Surface Energy” of the 4D Nucleus. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: <b>Angular Momentum problem</b> in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;<b>Fermi Bubbles</b>—two large structures in gamma-rays and X-rays above and below Galactic center;<b>Missing Baryon problem</b> related to the fact that the observed amount of baryonic matter did not match theoretical predictions. WUM reveals <b>Inter-Connectivity of Primary Cosmological Parameters</b> and calculates their values, which are in good agreement with the latest results of their measurements. In 2013, WUM predicted the values of the following Cosmological parameters: gravitational, concentration of intergalactic plasma, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. “<i>The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy</i>” (Nobel Prize in Physics 2020) made by Prof. R. Genzel and A. Ghez is a confirmation of one of the most important predictions of WUM in 2013: “<i>Macroobjects of the World have cores made up of the discussed DM particles. Other particles, including DM and baryonic matter, form shells surrounding the cores</i>”.展开更多
Hypersphere World-Universe Model (WUM) is, in fact, a Paradigm Shift in Cosmology [1]. In this paper, we provide seven Pillars of WUM: Medium of the World;Inter-Connectivity of Primary Cosmological Parameters;Creation...Hypersphere World-Universe Model (WUM) is, in fact, a Paradigm Shift in Cosmology [1]. In this paper, we provide seven Pillars of WUM: Medium of the World;Inter-Connectivity of Primary Cosmological Parameters;Creation of Matter;Multicomponent Dark Matter;Macroobjects;Volcanic Rotational Fission;Dark Matter Reactors. We describe the evolution of the World from the Beginning up to the birth of the Solar System and discuss the condition of the Early Earth before the beginning of life on it.展开更多
Unidentified Infrared emission bands (UIBs) are infrared discrete emissions from circumstellar regions, interstellar media (ISM), star-forming regions, and extragalactic objects for which the identity of the emitting ...Unidentified Infrared emission bands (UIBs) are infrared discrete emissions from circumstellar regions, interstellar media (ISM), star-forming regions, and extragalactic objects for which the identity of the emitting materials is unknown. The main infrared features occur around peaks at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 μm with the photon’s rest energy at the peaks 0.376, 0.200, 0.161, 0.144, 0.111, and 0.098 eV, respectively. The UIB emission phenomenon has been studied for about forty five years. The prevailing hypothesis is that the materials responsible for UIB are polycyclic aromatic hydrocarbon (PAH) molecules. PAHs are thought to be one of the main forms in which carbon exists in space. And yet, not a single member of this group of compounds had been identified in space definitively until now [1]. In frames of Hypersphere World-Universe Model (WUM), we introduced Dark Matter (DM) particles, named DIONs, with the rest energy 0.199 eV and an energy density of 68.8% of the total energy density of the World. DIONs compose Outer shells of DM Supercluster’s Cores—the main objects of the World [2]. In this paper, we give an explanation of UIB emission based on the self-annihilation of DM particles DIONs and biDIONs (DIONs pairs) with a rest energy about 0.38 eV that depends on the binding energy. To the best of our knowledge, WUM is the only cosmological model in existence that is consistent with UIB emission phenomenon.展开更多
We present a dark matter model to explain the excess events in the electron recoil data recently reported by the Xenon1 T experiment. In our model, dark matter χ annihilates into a pair of on-shell particles Φ, whic...We present a dark matter model to explain the excess events in the electron recoil data recently reported by the Xenon1 T experiment. In our model, dark matter χ annihilates into a pair of on-shell particles Φ, which subsequently decay into the ψψ final state;ψ interacts with electrons to generate the observed excess events. Because of the mass hierarchy, the velocity of ψ can be rather large and can have an extended distribution, providing a good fit to the electron recoil energy spectrum. We estimate the flux of ψ from dark matter annihilations in the galaxy and further determine the interaction cross section, which is sizable but sufficiently small to allow ψ to penetrate the rocks to reach the underground labs.展开更多
This paper explains the absorption of an electromagnetic wave within a physical body. We provide a description of how an elementary physical particle absorbs electromagnetic waves within its structure and, after absor...This paper explains the absorption of an electromagnetic wave within a physical body. We provide a description of how an elementary physical particle absorbs electromagnetic waves within its structure and, after absorption, how this particle keeps it in memory and emits it. This absorption is like the eating of cosmological food by physical entities. This paper proposes that the universe is comprised of cosmological, physical, biological, psychological, and intellectual worlds that all follow parallel laws within their referred science. The paper creates a model of the elementary physical particle (EPP) using the parallel logic of the biological DNA model. This model is capable of explaining the emission, absorption, and memorization of physical signals. Several cosmological mysteries, like the interconvertibility of electric and magnetic fields, attraction, repulsion, space fabric, etc., unfold while disclosing the absorption and emission processes. The philosophical correctness of this paper is validated through the unification of multidisciplinary aspects, and its scientific correctness is validated by its logical consistency with the results of well-known experiments. The theory clarifies the “cause” within nature, and by analyzing the “effects”, we can reach new realities of the cosmological world.展开更多
Primordial black holes (PBHs) are a profound signature of primordial cosmological structures and provide a theoretical tool to study nontrivial physics of the early Universe. The mechanisms of PBH formation are disc...Primordial black holes (PBHs) are a profound signature of primordial cosmological structures and provide a theoretical tool to study nontrivial physics of the early Universe. The mechanisms of PBH formation are discussed and observational constraints on the PBH spectrum, or effects of PBH evaporation, are shown to restrict a wide range of particle physics models, predicting an enhancement of the ultraviolet part of the spectrum of density perturbations, early dust-like stages, first order phase transitions and stages of superheavy metastable particle dominance in the early Universe. The mechanism of closed wall contraction can lead, in the inflationary Universe, to a new approach to galaxy formation, involving primordial clouds of massive BHs created around the intermediate mass or supermassive BH and playing the role of galactic seeds.展开更多
The DArk Matter Particle Explorer (DAMPE) is a space high-energy cosmic-ray detector covering a wide energy band with a high energy resolution. One of the key scientific goals of DAMPE is to carry out indirect detecti...The DArk Matter Particle Explorer (DAMPE) is a space high-energy cosmic-ray detector covering a wide energy band with a high energy resolution. One of the key scientific goals of DAMPE is to carry out indirect detection of dark matter by searching for high-energy gamma-ray line structure. To promote the sensitivity of gamma-ray line search with DAMPE, it is crucial to improve the acceptance and energy resolution of gamma-ray photons. In this paper, we quantitatively proved that the photon sample with the largest ratio of acceptance to energy resolution is optimal for line search. We therefore developed a line-search sample specifically optimized for the line-search. Meanwhile, in order to increase the statistics, we also selected the so-called BGO-only photons that convert into e^(+)e^(-) pairs only in the BGO calorimeter. The standard, the line-search, and the BGO-only photon samples are then tested for line-search individually and collectively. The results show that a significantly improved limit could be obtained from an appropriate combination of the date sets, and the increase is about 20% for the highest case compared with using the standard sample only.展开更多
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFA1607100,and 2022YFA1605000)the National Natural Science Foundation of China(Grant Nos.12322511,12175112,12005111,and 11725522)。
文摘Dark matter(DM)is a major constituent of the Universe.However,no definite evidence of DM particles(denoted as“χ”)has been found in DM direct detection(DD)experiments to date.There is a novel concept of detectingχfrom evaporating primordial black holes(PBHs).We search forχemitted from PBHs by investigating their interaction with target electrons.The examined PBH masses range from 1×10^(15)to 7×10^(16)g under the current limits of PBH abundance fPBH.Using 205.4 kg·day data obtained from the CDEX-10 experiment conducted in the China Jinping Underground Laboratory,we exclude theχ-electron(χ-e)elastic-scattering cross sectionσ_(χe)~5×10^(-29)cm^(2)forχwith a mass■keV from our results.With the higher radiation background but lower energy threshold(160 eV),CDEX-10 fills a part of the gap in the previous work.If(m_(χ),σ_(χe))can be determined in the future,DD experiments are expected to impose strong constraints on fPBHfor large MPBHs.
文摘Hypersphere World-Universe Model (WUM) is an alternative to the prevailing Big Bang Model (BBM). WUM and BBM are principally different Models: 1) Instead of the Initial Singularity with the infinite energy density and the extremely rapid expansion of the space (Inflation) in BBM;in WUM, there was a Fluctuation (4D Nucleus of the World with an extrapolated radius equals to a basic unit of size <i>a</i>) in the Eternal Universe with a finite extrapolated energy density (four orders of magnitude less than the nuclear density) and a finite expansion of the Nucleus in its fourth spatial dimension with speed <i>c</i> that is the gravitodynamic constant;2) Instead of the Infinite Homogeneous and Isotropic Universe around the Initial Singularity in BBM;in WUM, the 3D Finite Boundless World (the Hypersphere of the 4D Nucleus) presents a Patchwork Quilt of different Luminous Superclusters (≳10<sup>3</sup>), which emerged in various places of the World at different Cosmological times. The Medium of the World is Homogeneous and Isotropic. The distribution of Macroobjects in the World is spatially Inhomogeneous and Anisotropic and temporally Non-simultaneous. The Absolute Age of the entire World (determined by the parameters of the Medium) is 14.22 Gyr.
文摘The developed Hypersphere World-Universe Model (WUM) is consistent with all Concepts of the World [1]. In WUM, we postulate the principal role of Angular Momentum and Dark Matter in Cosmological theories of the World. The most widely accepted model of Solar System formation, known as the Nebular hypothesis, does not solve the Angular Momentum problem—why is the orbital momentum of Jupiter larger than rotational momentum of the Sun? WUM is the only cosmological model in existence that is consistent with this Fundamental Law. The Nebular hypothesis does not solve Internal Heating and Diversity problems for all Planets and Moons in Solar system—why the actual mean surface temperature of them is higher than their effective temperature calculated based on the Sun’s heat for them and how could each one be so different if all of them came from the same nebula? The proposed concept of Dark Matter Reactors in Cores of all gravitationally-rounded Macroobjects successfully resolves these problems.
基金supported by the National Natural Science Foundation of China(Nos.12375193,11975292,11875304)the CAS“Light of West China”Program+1 种基金the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.GJJSTD20210009)the CAS Pioneer Hundred Talent Program。
文摘The high energy cosmic-radiation detection(HERD)facility is planned to launch in 2027 and scheduled to be installed on the China Space Station.It serves as a dark matter particle detector,a cosmic ray instrument,and an observatory for high-energy gamma rays.A transition radiation detector placed on one of its lateral sides serves dual purpose,(ⅰ)calibrating HERD's electromagnetic calorimeter in the TeV energy range,and(ⅱ)serving as an independent detector for high-energy gamma rays.In this paper,the prototype readout electronics design of the transition radiation detector is demonstrated,which aims to accurately measure the charge of the anodes using the SAMPA application specific integrated circuit chip.The electronic performance of the prototype system is evaluated in terms of noise,linearity,and resolution.Through the presented design,each electronic channel can achieve a dynamic range of 0–100 fC,the RMS noise level not exceeding 0.15 fC,and the integral nonlinearity was<0.2%.To further verify the readout electronic performance,a joint test with the detector was carried out,and the results show that the prototype system can satisfy the requirements of the detector's scientific goals.
文摘Hypersphere World-Universe Model (WUM) envisions Matter carried from the Universe into the World from the fourth spatial dimension by Dark Matter Particles (DMPs). Luminous Matter is a byproduct of Dark Matter (DM) self-annihilation. WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) and Luminous Epoch (ever since for 13.77 billion years). Big Bang discussed in Standard Cosmology (SC) is, in our view, transition from Dark Epoch to Luminous Epoch due to Rotational Fission of Overspinning DM Supercluster’s Cores and self-annihilation of DMPs. WUM solves a number of physical problems in SC and Astrophysics through DMPs and their interactions: Angular Momentum problem in birth and subsequent evolution of Galaxies and Extrasolar systems;Fermi Bubbles—two large structures in gamma-rays and X-rays above and below Galactic center;Coronal Heating problem in solar physics—temperature of Sun’s corona exceeding that of photosphere by millions of degrees;Cores of Sun and Earth rotating faster than their surfaces;Diversity of Gravitationally-Rounded objects in Solar system and their Internal Heating. Model makes predictions pertaining to Rest Energies of DMPs, proposes New Type of their Interactions. WUM reveals Inter-Connectivity of Primary Cosmological Parameters and calculates their values, which are in good agreement with the latest results of their measurements.
文摘This paper provides an overview of the Hypersphere World-Universe Model (WUM). WUM unifies and simplifies existing cosmological models and results into a single coherent picture, and proceeds to discuss the origin, evolution, structure, ultimate fate, and primary parameters of the World. WUM explains the experimental data accumulated in the field of Cosmology and Astroparticle Physics over the last decades: the age of the world and critical energy density;the gravitational parameter and Hubble’s parameter;temperatures of the cosmic microwave background radiation and the peak of the far-infrared background radiation;gamma-ray background and cosmic neutrino background;macrostructure of the world and macroobjects structure. Additionally, the model makes predictions pertaining to masses of dark matter particles, photons, and neutrinos, proposes new types of particle interactions (Super Weak and Extremely Weak), and shows inter-connectivity of primary cosmological parameters of the world and the rise of the solar luminosity during the last 4.6 Byr. The model proposes to introduce a new fundamental parameter Q in the CODATA internationally recommended values.
文摘Dirac’s themes were the unity and beauty of Nature. He identified three revolutions in modern physics: Relativity, Quantum Mechanics and Cosmology. In his opinion: “<i>The new cosmology will probably turn out to be philosophically even more revolutionary than relativity or the quantum theory, perhaps looking forward to the current bonanza in cosmology, where precise observations on some of the most distant objects in the universe are shedding light on the nature of reality, on the nature of matter and on the most advanced quantum theories</i>” [Farmelo, G. (2009) The Strangest Man. The Hidden Life of Paul Dirac, Mystic of the Atom. Basic Books, Britain, 661 p]. In 1937, Paul Dirac proposed the Large Number Hypothesis and the Hypothesis of the variable gravitational “constant”;and later added the notion of continuous creation of Matter in the World. The developed Hypersphere World-Universe Model (WUM) follows these ideas, albeit introducing a different mechanism of matter creation. In this paper, we show that WUM is a natural continuation of Classical Physics and it can already serve as a basis for a New Cosmology proposed by Paul Dirac.
文摘The main objective of this paper is to discuss the Evolution of a 3D Finite World (that is a Hypersphere of a 4D Nucleus of the World) from the Beginning up to the present Epoch in frames of World-Universe Model (WUM). WUM is the only cosmological model in existence that is consistent with the Law of Conservation of Angular Momentum. To be consistent with this Fundamental Law, WUM introduces Dark Epoch (spanning from the Beginning of the World for 0.45 billion years) when only Dark Matter (DM) Macroobjects (MOs) existed, and Luminous Epoch (ever since for 13.77 billion years) when Luminous MOs emerged due to Rotational Fission of Overspinning DM Superclusters’ Cores and self-annihilation of Dark Matter Particles (DMPs). WUM envisions that DM is created by the Universe in the 4D Nucleus of the World. Dark Matter Particles (DMPs) carry new DM into the 3D Hypersphere World. Luminous Matter is a byproduct of DMPs self-annihilation. By analogy with 3D ball, which has two-dimensional sphere surface (that has surface energy), we can imagine that the 3D Hypersphere World has a “Surface Energy” of the 4D Nucleus. WUM solves a number of physical problems in contemporary Cosmology and Astrophysics through DMPs and their interactions: <b>Angular Momentum problem</b> in birth and subsequent evolution of Galaxies and Extrasolar systems—how do they obtain it;<b>Fermi Bubbles</b>—two large structures in gamma-rays and X-rays above and below Galactic center;<b>Missing Baryon problem</b> related to the fact that the observed amount of baryonic matter did not match theoretical predictions. WUM reveals <b>Inter-Connectivity of Primary Cosmological Parameters</b> and calculates their values, which are in good agreement with the latest results of their measurements. In 2013, WUM predicted the values of the following Cosmological parameters: gravitational, concentration of intergalactic plasma, and the minimum energy of photons, which were experimentally confirmed in 2015-2018. “<i>The Discovery of a Supermassive Compact Object at the Centre of Our Galaxy</i>” (Nobel Prize in Physics 2020) made by Prof. R. Genzel and A. Ghez is a confirmation of one of the most important predictions of WUM in 2013: “<i>Macroobjects of the World have cores made up of the discussed DM particles. Other particles, including DM and baryonic matter, form shells surrounding the cores</i>”.
文摘Hypersphere World-Universe Model (WUM) is, in fact, a Paradigm Shift in Cosmology [1]. In this paper, we provide seven Pillars of WUM: Medium of the World;Inter-Connectivity of Primary Cosmological Parameters;Creation of Matter;Multicomponent Dark Matter;Macroobjects;Volcanic Rotational Fission;Dark Matter Reactors. We describe the evolution of the World from the Beginning up to the birth of the Solar System and discuss the condition of the Early Earth before the beginning of life on it.
文摘Unidentified Infrared emission bands (UIBs) are infrared discrete emissions from circumstellar regions, interstellar media (ISM), star-forming regions, and extragalactic objects for which the identity of the emitting materials is unknown. The main infrared features occur around peaks at 3.3, 6.2, 7.7, 8.6, 11.2, and 12.7 μm with the photon’s rest energy at the peaks 0.376, 0.200, 0.161, 0.144, 0.111, and 0.098 eV, respectively. The UIB emission phenomenon has been studied for about forty five years. The prevailing hypothesis is that the materials responsible for UIB are polycyclic aromatic hydrocarbon (PAH) molecules. PAHs are thought to be one of the main forms in which carbon exists in space. And yet, not a single member of this group of compounds had been identified in space definitively until now [1]. In frames of Hypersphere World-Universe Model (WUM), we introduced Dark Matter (DM) particles, named DIONs, with the rest energy 0.199 eV and an energy density of 68.8% of the total energy density of the World. DIONs compose Outer shells of DM Supercluster’s Cores—the main objects of the World [2]. In this paper, we give an explanation of UIB emission based on the self-annihilation of DM particles DIONs and biDIONs (DIONs pairs) with a rest energy about 0.38 eV that depends on the binding energy. To the best of our knowledge, WUM is the only cosmological model in existence that is consistent with UIB emission phenomenon.
基金Supported in part by the National Natural Science Foundation of China(U1738134,11775109)。
文摘We present a dark matter model to explain the excess events in the electron recoil data recently reported by the Xenon1 T experiment. In our model, dark matter χ annihilates into a pair of on-shell particles Φ, which subsequently decay into the ψψ final state;ψ interacts with electrons to generate the observed excess events. Because of the mass hierarchy, the velocity of ψ can be rather large and can have an extended distribution, providing a good fit to the electron recoil energy spectrum. We estimate the flux of ψ from dark matter annihilations in the galaxy and further determine the interaction cross section, which is sizable but sufficiently small to allow ψ to penetrate the rocks to reach the underground labs.
文摘This paper explains the absorption of an electromagnetic wave within a physical body. We provide a description of how an elementary physical particle absorbs electromagnetic waves within its structure and, after absorption, how this particle keeps it in memory and emits it. This absorption is like the eating of cosmological food by physical entities. This paper proposes that the universe is comprised of cosmological, physical, biological, psychological, and intellectual worlds that all follow parallel laws within their referred science. The paper creates a model of the elementary physical particle (EPP) using the parallel logic of the biological DNA model. This model is capable of explaining the emission, absorption, and memorization of physical signals. Several cosmological mysteries, like the interconvertibility of electric and magnetic fields, attraction, repulsion, space fabric, etc., unfold while disclosing the absorption and emission processes. The philosophical correctness of this paper is validated through the unification of multidisciplinary aspects, and its scientific correctness is validated by its logical consistency with the results of well-known experiments. The theory clarifies the “cause” within nature, and by analyzing the “effects”, we can reach new realities of the cosmological world.
文摘Primordial black holes (PBHs) are a profound signature of primordial cosmological structures and provide a theoretical tool to study nontrivial physics of the early Universe. The mechanisms of PBH formation are discussed and observational constraints on the PBH spectrum, or effects of PBH evaporation, are shown to restrict a wide range of particle physics models, predicting an enhancement of the ultraviolet part of the spectrum of density perturbations, early dust-like stages, first order phase transitions and stages of superheavy metastable particle dominance in the early Universe. The mechanism of closed wall contraction can lead, in the inflationary Universe, to a new approach to galaxy formation, involving primordial clouds of massive BHs created around the intermediate mass or supermassive BH and playing the role of galactic seeds.
基金The DAMPE mission was funded by the strategic priority science and technology projects in space science of Chinese Academy of SciencesIn China the data analysis is supported in part by the National Key Research and Development Program of China(No.2016YFA0400200)+2 种基金the National Natural Science Foundation of China(Nos.U1738210,U1738123,U1738205,U1738138,11921003,and 12003074)the Youth Innovation Promotion Association CAS,the Key Research Program of the Chinese Academy of Sciences Grant(No.ZDRW-KT-2019-5)the Entrepreneurship and Innovation Program of Jiangsu Province.
文摘The DArk Matter Particle Explorer (DAMPE) is a space high-energy cosmic-ray detector covering a wide energy band with a high energy resolution. One of the key scientific goals of DAMPE is to carry out indirect detection of dark matter by searching for high-energy gamma-ray line structure. To promote the sensitivity of gamma-ray line search with DAMPE, it is crucial to improve the acceptance and energy resolution of gamma-ray photons. In this paper, we quantitatively proved that the photon sample with the largest ratio of acceptance to energy resolution is optimal for line search. We therefore developed a line-search sample specifically optimized for the line-search. Meanwhile, in order to increase the statistics, we also selected the so-called BGO-only photons that convert into e^(+)e^(-) pairs only in the BGO calorimeter. The standard, the line-search, and the BGO-only photon samples are then tested for line-search individually and collectively. The results show that a significantly improved limit could be obtained from an appropriate combination of the date sets, and the increase is about 20% for the highest case compared with using the standard sample only.