Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function...Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function.Besides,traumatic brain injury(TBI)and various brain diseases are also greatly influenced by the brain's mechanical properties.Whether white matter or grey matter,brain tissue contains multiscale structures composed of neurons,glial cells,fibers,blood vessels,etc.,each with different mechanical properties.As such,brain tissue exhibits complex mechanical behavior,usually with strong nonlinearity,heterogeneity,and directional dependence.Building a constitutive law for multiscale brain tissue using traditional function-based approaches can be very challenging.Instead,this paper proposes a data-driven approach to establish the desired mechanical model of brain tissue.We focus on blood vessels with internal pressure embedded in a white or grey matter matrix material to demonstrate our approach.The matrix is described by an isotropic or anisotropic nonlinear elastic model.A representative unit cell(RUC)with blood vessels is built,which is used to generate the stress-strain data under different internal blood pressure and various proportional displacement loading paths.The generated stress-strain data is then used to train a mechanical law using artificial neural networks to predict the macroscopic mechanical response of brain tissue under different internal pressures.Finally,the trained material model is implemented into finite element software to predict the mechanical behavior of a whole brain under intracranial pressure and distributed body forces.Compared with a direct numerical simulation that employs a reference material model,our proposed approach greatly reduces the computational cost and improves modeling efficiency.The predictions made by our trained model demonstrate sufficient accuracy.Specifically,we find that the level of internal blood pressure can greatly influence stress distribution and determine the possible related damage behaviors.展开更多
With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests...With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.展开更多
Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emergi...Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device.展开更多
Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is ...Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.展开更多
Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow fie...Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.展开更多
The so-called fourth-generation biodegradable vascular stent has become a research hotspot in thefield of bioengineering because of its good degradation ability and drug-loading characteristics.However,the preparationo...The so-called fourth-generation biodegradable vascular stent has become a research hotspot in thefield of bioengineering because of its good degradation ability and drug-loading characteristics.However,the preparationof polymer-degraded vascular stents is affected by known problem such as poor processflexibility,low formingaccuracy,large diameter wall thickness,limited complex pore structure,weak mechanical properties of radial support and high process cost.In this study,a deposition technique based on a high-voltage electric-field-driven continuous rotating jet is proposed to fabricate fully degraded polymer vascular stents.The experimental results showthat,due to the rotation of the deposition axis,the deposition direction of PCL(polycaprolactone)micro-jet isalways tangent to the surface of the deposition axis.The direction of the viscous drag force is also consistent withthe deposition direction of the jet.It is shown that by setting different rotation speeds of deposition axisωandlinear motion speeds of the nozzle V,the direction of rotation,pitch and angle of the individual printed spiralcurve can be precisely tuned.In the process of multiple spiral curves matching the deposition forming thin walltube mesh,the mesh shape and size of the thin wall tube can be accurately controlled by changing the number ofmatching spiral curves and the size of the matching position bias distance.Finally,the characteristics of a PCLtubular stent sample(with uniform-size microfibers and mesh shape),fabricated under the appropriate processparameters are described in detail.展开更多
Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This s...Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This study is based on developing a safer laser driven flyer plate prototype comprised of a laser initiator and a flyer plate subsystem that can be used with secondary explosives.System parameters were optimized to initiate the shock-to-detonation transition(SDT)of a secondary explosive based on the impact created by the flyer plate on the explosive surface.Rupture of the flyer was investigated at the mechanically weakened region located on the interface of these subsystems,where the product gases from the deflagration of the explosive provide the required energy.A bilayer energetic material was used,where the first layer consisted of a pyrotechnic component,zirconium potassium perchlorate(ZPP),for sustaining the ignition by the laser beam and the second layer consisted of an insensitive explosive,cyclotetramethylene-tetranitramine(HMX),for deflagration.A plexiglass interface was used to enfold the energetic material.The focal length of the laser beam from the diode was optimized to provide a homogeneous beam profile with maximum power at the surface of the ZPP.Closed bomb experiments were conducted in an internal volume of 10 cm^(3) for evaluation of performance.Dependency of the laser driven flyer plate system output on confinement,explosive density,and laser beam power were analyzed.Measurements using a high-speed camera resulted in a flyer velocity of 670±20 m/s that renders the prototype suitable as a laser detonator in applications,where controlled employment of explosives is critical.展开更多
Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsands...Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracturepropagation and production was completed. Based on data analysis, the hydraulic fracture parameters wereoptimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influenceof geological and engineering factors in the X1 and X2 development zones in the study area differs significantly.Therefore, it is challenging to adopt a uniform development strategy to achieve rapid production increase. Thedata analysis reveals that the variation in gas production rate is primarily affected by the reservoir thickness andpermeability parameters as geological factors. On the other hand, the amount of treatment fluid and proppantaddition significantly impact the gas production rate as engineering factors. Among these factors, the influence ofgeological factors is more pronounced in block X1. Therefore, the main focus should be on further optimizing thefracturing interval and adjusting the geological development well location. Given the existing well location, thereis limited potential for further optimizing fracture parameters to increase production. For block X2, the fracturingparameters should be optimized. Data screening was conducted to identify outliers in the entire dataset, and adata-driven fracturing parameter optimization method was employed to determine the basic adjustment directionfor reservoir stimulation in the target block. This approach provides insights into the influence of geological,stimulation, and completion parameters on gas production rate. Consequently, the subsequent fracturing parameteroptimization design can significantly reduce the modeling and simulation workload and guide field operations toimprove and optimize hydraulic fracturing efficiency.展开更多
Using Louisiana’s Interstate system, this paper aims to demonstrate how data can be used to evaluate freight movement reliability, economy, and safety of truck freight operations to improve decision-making. Data main...Using Louisiana’s Interstate system, this paper aims to demonstrate how data can be used to evaluate freight movement reliability, economy, and safety of truck freight operations to improve decision-making. Data mainly from the National Performance Management Research Data Set (NPMRDS) and the Louisiana Crash Database were used to analyze Truck Travel Time Reliability Index, commercial vehicle User Delay Costs, and commercial vehicle safety. The results indicate that while Louisiana’s Interstate system remained reliable over the years, some segments were found to be unreliable, which were annually less than 12% of the state’s Interstate system mileage. The User Delay Costs by commercial vehicles on these unreliable segments were, on average, 65.45% of the User Delay Cost by all vehicles on the Interstate highway system between 2016 and 2019, 53.10% between 2020 and 2021, and 70.36% in 2022, which are considerably high. These disproportionate ratios indicate the economic impact of the unreliability of the Interstate system on commercial vehicle operations. Additionally, though the annual crash frequencies remained relatively constant, an increasing proportion of commercial vehicles are involved in crashes, with segments (mileposts) that have high crash frequencies seeming to correspond with locations with recurring congestion on the Interstate highway system. The study highlights the potential of using data to identify areas that need improvement in transportation systems to support better decision-making.展开更多
In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the sy...In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation.展开更多
Dynamic data driven simulation (DDDS) is proposed to improve the model by incorporaing real data from the practical systems into the model. Instead of giving a static input, multiple possible sets of inputs are fed ...Dynamic data driven simulation (DDDS) is proposed to improve the model by incorporaing real data from the practical systems into the model. Instead of giving a static input, multiple possible sets of inputs are fed into the model. And the computational errors are corrected using statistical approaches. It involves a variety of aspects, including the uncertainty modeling, the measurement evaluation, the system model and the measurement model coupling ,the computation complexity, and the performance issue. Authors intend to set up the architecture of DDDS for wildfire spread model, DEVS-FIRE, based on the discrete event speeification (DEVS) formalism. The experimental results show that the framework can track the dynamically changing fire front based on fire sen- sor data, thus, it provides more aecurate predictions.展开更多
Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorpt...Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorption process and flow behavior in complex fracture systems- induced or natural) leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called "hard data" directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The "hard data" refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of "soft data"(non-measured, interpretive data such as frac length, width,height and conductivity) in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset.展开更多
The application scope and future development directions of machine learning models(supervised learning, transfer learning, and unsupervised learning) that have driven energy material design are discussed.
During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place i...During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place in 2019.One fundamental question is how we can push forward the development of mobile wireless communications while it has become an extremely complex and sophisticated system.We believe that the answer lies in the huge volumes of data produced by the network itself,and machine learning may become a key to exploit such information.In this paper,we elaborate why the conventional model-based paradigm,which has been widely proved useful in pre-5 G networks,can be less efficient or even less practical in the future 5 G and beyond mobile networks.Then,we explain how the data-driven paradigm,using state-of-the-art machine learning techniques,can become a promising solution.At last,we provide a typical use case of the data-driven paradigm,i.e.,proactive load balancing,in which online learning is utilized to adjust cell configurations in advance to avoid burst congestion caused by rapid traffic changes.展开更多
Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the re...Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the results of fault prognosis,the maintenance strategy for underlying industrial systems can realize the conversion from passive maintenance to active maintenance.With the increased complexity and the improved automation level of industrial systems,fault prognosis techniques have become more and more indispensable.Particularly,the datadriven based prognosis approaches,which tend to find the hidden fault factors and determine the specific fault occurrence time of the system by analysing historical or real-time measurement data,gain great attention from different industrial sectors.In this context,the major task of this paper is to present a systematic overview of data-driven fault prognosis for industrial systems.Firstly,the characteristics of different prognosis methods are revealed with the data-based ones being highlighted.Moreover,based on the different data characteristics that exist in industrial systems,the corresponding fault prognosis methodologies are illustrated,with emphasis on analyses and comparisons of different prognosis methods.Finally,we reveal the current research trends and look forward to the future challenges in this field.This review is expected to serve as a tutorial and source of references for fault prognosis researchers.展开更多
When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency...When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency of the existing design theory, according to the performance features of complex mechanical products, the performance indices are introduced into the traditional design theory of "Requirement-Function-Structure" to construct a new five-domain design theory of "Client Requirement-Function-Performance-Structure-Design Parameter". To support design practice based on this new theory, a product data model is established by using per- formance indices and the mapping relationship between them and the other four domains. When the product data model is applied to high-speed train design and combining the existing research result and relevant standards, the corresponding data model and its structure involving five domains of high-speed trains are established, which can provide technical support for studying the relationships between typical performance indices and design parame- ters and the fast achievement of a high-speed train scheme design. The five domains provide a reference for the design specification and evaluation criteria of high speed train and a new idea for the train's parameter design.展开更多
The edge cache is an effective way to reduce the heavy traffic load and the end-to-end latency in radio access networks(RANs)for supporting a number of critical Internet of Things(IoT)services and applications.It has ...The edge cache is an effective way to reduce the heavy traffic load and the end-to-end latency in radio access networks(RANs)for supporting a number of critical Internet of Things(IoT)services and applications.It has been verified to provide high spectral efficiency,high energy efficiency,and low latency.To exploit the advantages of edge cache,a paradigm of fog computing-based radio access networks(F-RANs)has emerged to provide great flexibility to satisfy quality-of-service requirements of various IoT applications in the fifth generation(5G)wireless systems.展开更多
The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly d...The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.展开更多
文摘Brain tissue is one of the softest parts of the human body,composed of white matter and grey matter.The mechanical behavior of the brain tissue plays an essential role in regulating brain morphology and brain function.Besides,traumatic brain injury(TBI)and various brain diseases are also greatly influenced by the brain's mechanical properties.Whether white matter or grey matter,brain tissue contains multiscale structures composed of neurons,glial cells,fibers,blood vessels,etc.,each with different mechanical properties.As such,brain tissue exhibits complex mechanical behavior,usually with strong nonlinearity,heterogeneity,and directional dependence.Building a constitutive law for multiscale brain tissue using traditional function-based approaches can be very challenging.Instead,this paper proposes a data-driven approach to establish the desired mechanical model of brain tissue.We focus on blood vessels with internal pressure embedded in a white or grey matter matrix material to demonstrate our approach.The matrix is described by an isotropic or anisotropic nonlinear elastic model.A representative unit cell(RUC)with blood vessels is built,which is used to generate the stress-strain data under different internal blood pressure and various proportional displacement loading paths.The generated stress-strain data is then used to train a mechanical law using artificial neural networks to predict the macroscopic mechanical response of brain tissue under different internal pressures.Finally,the trained material model is implemented into finite element software to predict the mechanical behavior of a whole brain under intracranial pressure and distributed body forces.Compared with a direct numerical simulation that employs a reference material model,our proposed approach greatly reduces the computational cost and improves modeling efficiency.The predictions made by our trained model demonstrate sufficient accuracy.Specifically,we find that the level of internal blood pressure can greatly influence stress distribution and determine the possible related damage behaviors.
基金supported by the National Natural Science Foundation of China (62272078)。
文摘With the ongoing advancements in sensor networks and data acquisition technologies across various systems like manufacturing,aviation,and healthcare,the data driven vibration control(DDVC)has attracted broad interests from both the industrial and academic communities.Input shaping(IS),as a simple and effective feedforward method,is greatly demanded in DDVC methods.It convolves the desired input command with impulse sequence without requiring parametric dynamics and the closed-loop system structure,thereby suppressing the residual vibration separately.Based on a thorough investigation into the state-of-the-art DDVC methods,this survey has made the following efforts:1)Introducing the IS theory and typical input shapers;2)Categorizing recent progress of DDVC methods;3)Summarizing commonly adopted metrics for DDVC;and 4)Discussing the engineering applications and future trends of DDVC.By doing so,this study provides a systematic and comprehensive overview of existing DDVC methods from designing to optimizing perspectives,aiming at promoting future research regarding this emerging and vital issue.
基金supported by National Natural Science Foundation of China(Nos.52077129 and 52277150)the Natural Science Foundation of Shandong Province(No.ZR2022ME037).
文摘Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device.
基金Project supported by the National Key R&D Program of China(Grant Nos.2022YFE03070000 and 2022YFE03070003)the National Natural Science Foundation of China(Grant Nos.12375220 and 12075114)+3 种基金the Hunan Provincial Natural Science Foundation(Grant No.2021JJ30569)the Doctoral Initiation Fund Project of University of South China(Grant No.190XQD114)the Hunan Nuclear Fusion International Science and Technology Innovation Cooperation Base(Grant No.2018WK4009)the Hengyang Key Laboratory of Magnetic Confinement Nuclear Fusion Research(Grant No.2018KJ108)。
文摘Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface.
基金Supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20210347)Supported by the National Natural Science Foundation of China(Grant No.U2141246).
文摘Artificial intelligence technology is introduced into the simulation of muzzle flow field to improve its simulation efficiency in this paper.A data-physical fusion driven framework is proposed.First,the known flow field data is used to initialize the model parameters,so that the parameters to be trained are close to the optimal value.Then physical prior knowledge is introduced into the training process so that the prediction results not only meet the known flow field information but also meet the physical conservation laws.Through two examples,it is proved that the model under the fusion driven framework can solve the strongly nonlinear flow field problems,and has stronger generalization and expansion.The proposed model is used to solve a muzzle flow field,and the safety clearance behind the barrel side is divided.It is pointed out that the shape of the safety clearance under different launch speeds is roughly the same,and the pressure disturbance in the area within 9.2 m behind the muzzle section exceeds the safety threshold,which is a dangerous area.Comparison with the CFD results shows that the calculation efficiency of the proposed model is greatly improved under the condition of the same calculation accuracy.The proposed model can quickly and accurately simulate the muzzle flow field under various launch conditions.
基金supported by the National Natural Science Foundation of China(Grant Nos.51305128 and 52005059)The Key Scientific and Technological Project of Henan Province(Grant Nos.242102231054 and 242102220073)The Provincial Graduate Quality Engineering Project(Grant No.YJS2024JD38)。
文摘The so-called fourth-generation biodegradable vascular stent has become a research hotspot in thefield of bioengineering because of its good degradation ability and drug-loading characteristics.However,the preparationof polymer-degraded vascular stents is affected by known problem such as poor processflexibility,low formingaccuracy,large diameter wall thickness,limited complex pore structure,weak mechanical properties of radial support and high process cost.In this study,a deposition technique based on a high-voltage electric-field-driven continuous rotating jet is proposed to fabricate fully degraded polymer vascular stents.The experimental results showthat,due to the rotation of the deposition axis,the deposition direction of PCL(polycaprolactone)micro-jet isalways tangent to the surface of the deposition axis.The direction of the viscous drag force is also consistent withthe deposition direction of the jet.It is shown that by setting different rotation speeds of deposition axisωandlinear motion speeds of the nozzle V,the direction of rotation,pitch and angle of the individual printed spiralcurve can be precisely tuned.In the process of multiple spiral curves matching the deposition forming thin walltube mesh,the mesh shape and size of the thin wall tube can be accurately controlled by changing the number ofmatching spiral curves and the size of the matching position bias distance.Finally,the characteristics of a PCLtubular stent sample(with uniform-size microfibers and mesh shape),fabricated under the appropriate processparameters are described in detail.
文摘Laser driven flyer plate technology offers improved safety and reliability for detonation of explosives in industrial applications ranging from mining and stone quarrying to the aerospace and defense industries.This study is based on developing a safer laser driven flyer plate prototype comprised of a laser initiator and a flyer plate subsystem that can be used with secondary explosives.System parameters were optimized to initiate the shock-to-detonation transition(SDT)of a secondary explosive based on the impact created by the flyer plate on the explosive surface.Rupture of the flyer was investigated at the mechanically weakened region located on the interface of these subsystems,where the product gases from the deflagration of the explosive provide the required energy.A bilayer energetic material was used,where the first layer consisted of a pyrotechnic component,zirconium potassium perchlorate(ZPP),for sustaining the ignition by the laser beam and the second layer consisted of an insensitive explosive,cyclotetramethylene-tetranitramine(HMX),for deflagration.A plexiglass interface was used to enfold the energetic material.The focal length of the laser beam from the diode was optimized to provide a homogeneous beam profile with maximum power at the surface of the ZPP.Closed bomb experiments were conducted in an internal volume of 10 cm^(3) for evaluation of performance.Dependency of the laser driven flyer plate system output on confinement,explosive density,and laser beam power were analyzed.Measurements using a high-speed camera resulted in a flyer velocity of 670±20 m/s that renders the prototype suitable as a laser detonator in applications,where controlled employment of explosives is critical.
基金Research and Application of Key Technologies for Tight Gas Production Improvement and Rehabilitation of Linxing Shenfu(YXKY-ZL-01-2021)。
文摘Based on the actual data collected from the tight sandstone development zone, correlation analysis using theSpearman method was conducted to determine the main factors influencing the gas production rate of tightsandstone fracturing. An integrated model combining geological engineering and numerical simulation of fracturepropagation and production was completed. Based on data analysis, the hydraulic fracture parameters wereoptimized to develop a differentiated fracturing treatment adjustment plan. The results indicate that the influenceof geological and engineering factors in the X1 and X2 development zones in the study area differs significantly.Therefore, it is challenging to adopt a uniform development strategy to achieve rapid production increase. Thedata analysis reveals that the variation in gas production rate is primarily affected by the reservoir thickness andpermeability parameters as geological factors. On the other hand, the amount of treatment fluid and proppantaddition significantly impact the gas production rate as engineering factors. Among these factors, the influence ofgeological factors is more pronounced in block X1. Therefore, the main focus should be on further optimizing thefracturing interval and adjusting the geological development well location. Given the existing well location, thereis limited potential for further optimizing fracture parameters to increase production. For block X2, the fracturingparameters should be optimized. Data screening was conducted to identify outliers in the entire dataset, and adata-driven fracturing parameter optimization method was employed to determine the basic adjustment directionfor reservoir stimulation in the target block. This approach provides insights into the influence of geological,stimulation, and completion parameters on gas production rate. Consequently, the subsequent fracturing parameteroptimization design can significantly reduce the modeling and simulation workload and guide field operations toimprove and optimize hydraulic fracturing efficiency.
文摘Using Louisiana’s Interstate system, this paper aims to demonstrate how data can be used to evaluate freight movement reliability, economy, and safety of truck freight operations to improve decision-making. Data mainly from the National Performance Management Research Data Set (NPMRDS) and the Louisiana Crash Database were used to analyze Truck Travel Time Reliability Index, commercial vehicle User Delay Costs, and commercial vehicle safety. The results indicate that while Louisiana’s Interstate system remained reliable over the years, some segments were found to be unreliable, which were annually less than 12% of the state’s Interstate system mileage. The User Delay Costs by commercial vehicles on these unreliable segments were, on average, 65.45% of the User Delay Cost by all vehicles on the Interstate highway system between 2016 and 2019, 53.10% between 2020 and 2021, and 70.36% in 2022, which are considerably high. These disproportionate ratios indicate the economic impact of the unreliability of the Interstate system on commercial vehicle operations. Additionally, though the annual crash frequencies remained relatively constant, an increasing proportion of commercial vehicles are involved in crashes, with segments (mileposts) that have high crash frequencies seeming to correspond with locations with recurring congestion on the Interstate highway system. The study highlights the potential of using data to identify areas that need improvement in transportation systems to support better decision-making.
文摘In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation.
文摘Dynamic data driven simulation (DDDS) is proposed to improve the model by incorporaing real data from the practical systems into the model. Instead of giving a static input, multiple possible sets of inputs are fed into the model. And the computational errors are corrected using statistical approaches. It involves a variety of aspects, including the uncertainty modeling, the measurement evaluation, the system model and the measurement model coupling ,the computation complexity, and the performance issue. Authors intend to set up the architecture of DDDS for wildfire spread model, DEVS-FIRE, based on the discrete event speeification (DEVS) formalism. The experimental results show that the framework can track the dynamically changing fire front based on fire sen- sor data, thus, it provides more aecurate predictions.
基金RPSEA and U.S.Department of Energy for partially funding this study
文摘Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorption process and flow behavior in complex fracture systems- induced or natural) leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called "hard data" directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The "hard data" refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of "soft data"(non-measured, interpretive data such as frac length, width,height and conductivity) in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset.
基金supported by the National Key R&D Program of China(Grant No.2021YFC2100100)the National Natural Science Foundation of China(Grant No.21901157)+1 种基金the Shanghai Science and Technology Project of China(Grant No.21JC1403400)the SJTU Global Strategic Partnership Fund(Grant No.2020 SJTUHUJI)。
文摘The application scope and future development directions of machine learning models(supervised learning, transfer learning, and unsupervised learning) that have driven energy material design are discussed.
基金Supported by State Key Program of National Natural Science Foundation of China (60834001) and National Natural Science Foundation of China (60774022).Acknowledgement Authors would like to thank NSFC organizers and participants who shared their ideas and works with us during the NSFC workshop on data-based control, decision making, scheduling, and fault diagnosis. In particular, authors would like to thank Chai Tian-You, Sun You-Xian, Wang Hong, Yan Hong-Sheng, and Gao Fu-Rong for discussing the concept on design model shown in Fig. 12, the concept on temporal multi-scale shown in Fig. 8, the concept on fault diagnosis shown in Fig. 14, the concept on dynamic scheduling shown in Fig. 15, and the concept on interval model shown in Fig. 16, respectively.
基金partially supported by the National Natural Science Foundation of China(61751306,61801208,61671233)the Jiangsu Science Foundation(BK20170650)+2 种基金the Postdoctoral Science Foundation of China(BX201700118,2017M621712)the Jiangsu Postdoctoral Science Foundation(1701118B)the Fundamental Research Funds for the Central Universities(021014380094)
文摘During the past few decades,mobile wireless communications have experienced four generations of technological revolution,namely from 1 G to 4 G,and the deployment of the latest 5 G networks is expected to take place in 2019.One fundamental question is how we can push forward the development of mobile wireless communications while it has become an extremely complex and sophisticated system.We believe that the answer lies in the huge volumes of data produced by the network itself,and machine learning may become a key to exploit such information.In this paper,we elaborate why the conventional model-based paradigm,which has been widely proved useful in pre-5 G networks,can be less efficient or even less practical in the future 5 G and beyond mobile networks.Then,we explain how the data-driven paradigm,using state-of-the-art machine learning techniques,can become a promising solution.At last,we provide a typical use case of the data-driven paradigm,i.e.,proactive load balancing,in which online learning is utilized to adjust cell configurations in advance to avoid burst congestion caused by rapid traffic changes.
基金Supported by National Basic Research Program of China (973 Program) (2009CB320600), National Natural Science Foundation of China (60828007, 60534010, 60821063), the Leverhulme Trust (F/00. 120/BC) in the United Kingdom, and the 111 Project (B08015)
基金supported by the National Natural Science Foundation of China(61773087)the National Key Research and Development Program of China(2018YFB1601500)High-tech Ship Research Project of Ministry of Industry and Information Technology-Research of Intelligent Ship Testing and Verifacation([2018]473)
文摘Fault prognosis is mainly referred to the estimation of the operating time before a failure occurs,which is vital for ensuring the stability,safety and long lifetime of degrading industrial systems.According to the results of fault prognosis,the maintenance strategy for underlying industrial systems can realize the conversion from passive maintenance to active maintenance.With the increased complexity and the improved automation level of industrial systems,fault prognosis techniques have become more and more indispensable.Particularly,the datadriven based prognosis approaches,which tend to find the hidden fault factors and determine the specific fault occurrence time of the system by analysing historical or real-time measurement data,gain great attention from different industrial sectors.In this context,the major task of this paper is to present a systematic overview of data-driven fault prognosis for industrial systems.Firstly,the characteristics of different prognosis methods are revealed with the data-based ones being highlighted.Moreover,based on the different data characteristics that exist in industrial systems,the corresponding fault prognosis methodologies are illustrated,with emphasis on analyses and comparisons of different prognosis methods.Finally,we reveal the current research trends and look forward to the future challenges in this field.This review is expected to serve as a tutorial and source of references for fault prognosis researchers.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275432,51505390)Sichuan Application Foundation Projects(Grant No.2016JY0098)Independent Research Project of TPL(Grant No.TPL1501)
文摘When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency of the existing design theory, according to the performance features of complex mechanical products, the performance indices are introduced into the traditional design theory of "Requirement-Function-Structure" to construct a new five-domain design theory of "Client Requirement-Function-Performance-Structure-Design Parameter". To support design practice based on this new theory, a product data model is established by using per- formance indices and the mapping relationship between them and the other four domains. When the product data model is applied to high-speed train design and combining the existing research result and relevant standards, the corresponding data model and its structure involving five domains of high-speed trains are established, which can provide technical support for studying the relationships between typical performance indices and design parame- ters and the fast achievement of a high-speed train scheme design. The five domains provide a reference for the design specification and evaluation criteria of high speed train and a new idea for the train's parameter design.
文摘The edge cache is an effective way to reduce the heavy traffic load and the end-to-end latency in radio access networks(RANs)for supporting a number of critical Internet of Things(IoT)services and applications.It has been verified to provide high spectral efficiency,high energy efficiency,and low latency.To exploit the advantages of edge cache,a paradigm of fog computing-based radio access networks(F-RANs)has emerged to provide great flexibility to satisfy quality-of-service requirements of various IoT applications in the fifth generation(5G)wireless systems.
基金supported in part by National Natural Science Foundation of China(NSFC)under Project No.51737010.
文摘The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance.