期刊文献+
共找到10,380篇文章
< 1 2 250 >
每页显示 20 50 100
DATA FUSION ALGORITHM BASED ON STATE AND ATTRIBUTE PARAMETER 被引量:1
1
作者 康伟 潘泉 +1 位作者 张洪才 戴冠中 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1999年第2期38-43,共6页
A new data fusion algorithm is presented. The new algorithm has two steps. First, three basic probability assignments dependent on different attribute parameters with Demspter fusion rule are processed. Using the fusi... A new data fusion algorithm is presented. The new algorithm has two steps. First, three basic probability assignments dependent on different attribute parameters with Demspter fusion rule are processed. Using the fusion results, one can calculate the evidence interval of the proposition that “the return is from target”. Then based on the magnitude of the center of the evidence interval, one can reject some false alarms, so as to cut down the number of clutters accepted by the filter gate. Second, the attribute parameter likelihood function(APLF, for short) and kinematic measurement likelihood function are used to form a joint likelihood function. A method is also proposed for calculating APLF. As for APLF, it is found and proved that there are differences between similar targets and dissimlar targets. By using the differences, one can distinguish adjacent targets more efficiently. In a word, the technique presented in this paper is an integrated adaptive data association fusion algorithm. The advantages of the algorithm are discussed and demonstrated via single and multiple targets tracking simulations. In simulation, the target maneuver, the presence of clutter and the varying of parameters are taken into consideration. 展开更多
关键词 data association D S evidence inference theory data fusion
下载PDF
Parameter Estimation of a Valve-Controlled Cylinder System Model Based on Bench Test and Operating Data Fusion
2
作者 Deying Su Shaojie Wang +3 位作者 Haojing Lin Xiaosong Xia Yubing Xu Liang Hou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期247-263,共17页
The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual ... The accurate estimation of parameters is the premise for establishing a high-fidelity simulation model of a valve-controlled cylinder system.Bench test data are easily obtained,but it is challenging to emulate actual loads in the research on parameter estimation of valve-controlled cylinder system.Despite the actual load information contained in the operating data of the control valve,its acquisition remains challenging.This paper proposes a method that fuses bench test and operating data for parameter estimation to address the aforementioned problems.The proposed method is based on Bayesian theory,and its core is a pool fusion of prior information from bench test and operating data.Firstly,a system model is established,and the parameters in the model are analysed.Secondly,the bench and operating data of the system are collected.Then,the model parameters and weight coefficients are estimated using the data fusion method.Finally,the estimated effects of the data fusion method,Bayesian method,and particle swarm optimisation(PSO)algorithm on system model parameters are compared.The research shows that the weight coefficient represents the contribution of different prior information to the parameter estimation result.The effect of parameter estimation based on the data fusion method is better than that of the Bayesian method and the PSO algorithm.Increasing load complexity leads to a decrease in model accuracy,highlighting the crucial role of the data fusion method in parameter estimation studies. 展开更多
关键词 Valve-controlled cylinder system Parameter estimation The Bayesian theory data fusion method Weight coefficients
下载PDF
Optimized air-ground data fusion method for mine slope modeling
3
作者 LIU Dan HUANG Man +4 位作者 TAO Zhigang HONG Chenjie WU Yuewei FAN En YANG Fei 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2130-2139,共10页
Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized charact... Refined 3D modeling of mine slopes is pivotal for precise prediction of geological hazards.Aiming at the inadequacy of existing single modeling methods in comprehensively representing the overall and localized characteristics of mining slopes,this study introduces a new method that fuses model data from Unmanned aerial vehicles(UAV)tilt photogrammetry and 3D laser scanning through a data alignment algorithm based on control points.First,the mini batch K-Medoids algorithm is utilized to cluster the point cloud data from ground 3D laser scanning.Then,the elbow rule is applied to determine the optimal cluster number(K0),and the feature points are extracted.Next,the nearest neighbor point algorithm is employed to match the feature points obtained from UAV tilt photogrammetry,and the internal point coordinates are adjusted through the distanceweighted average to construct a 3D model.Finally,by integrating an engineering case study,the K0 value is determined to be 8,with a matching accuracy between the two model datasets ranging from 0.0669 to 1.0373 mm.Therefore,compared with the modeling method utilizing K-medoids clustering algorithm,the new modeling method significantly enhances the computational efficiency,the accuracy of selecting the optimal number of feature points in 3D laser scanning,and the precision of the 3D model derived from UAV tilt photogrammetry.This method provides a research foundation for constructing mine slope model. 展开更多
关键词 Air-ground data fusion method Mini batch K-Medoids algorithm Ebow rule Optimal cluster number 3D laser scanning UAV tilt photogrammetry
下载PDF
A landslide monitoring method using data from unmanned aerial vehicle and terrestrial laser scanning with insufficient and inaccurate ground control points 被引量:1
4
作者 Jiawen Zhou Nan Jiang +1 位作者 Congjiang Li Haibo Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4125-4140,共16页
Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These... Non-contact remote sensing techniques,such as terrestrial laser scanning(TLS)and unmanned aerial vehicle(UAV)photogrammetry,have been globally applied for landslide monitoring in high and steep mountainous areas.These techniques acquire terrain data and enable ground deformation monitoring.However,practical application of these technologies still faces many difficulties due to complex terrain,limited access and dense vegetation.For instance,monitoring high and steep slopes can obstruct the TLS sightline,and the accuracy of the UAV model may be compromised by absence of ground control points(GCPs).This paper proposes a TLS-and UAV-based method for monitoring landslide deformation in high mountain valleys using traditional real-time kinematics(RTK)-based control points(RCPs),low-precision TLS-based control points(TCPs)and assumed control points(ACPs)to achieve high-precision surface deformation analysis under obstructed vision and impassable conditions.The effects of GCP accuracy,GCP quantity and automatic tie point(ATP)quantity on the accuracy of UAV modeling and surface deformation analysis were comprehensively analyzed.The results show that,the proposed method allows for the monitoring accuracy of landslides to exceed the accuracy of the GCPs themselves by adding additional low-accuracy GCPs.The proposed method was implemented for monitoring the Xinhua landslide in Baoxing County,China,and was validated against data from multiple sources. 展开更多
关键词 Landslide monitoring data fusion Terrestrial laser scanning(TLS) Unmanned aerial vehicle(UAV) Model reconstruction
下载PDF
Fusion SST from Infrared and Microwave Measurement of FY-3D Meteorological Satellite 被引量:1
5
作者 张淼 徐娜 陈林 《Journal of Tropical Meteorology》 SCIE 2024年第1期89-96,共8页
Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrare... Sea surface temperature(SST)is one of the important parameters of global ocean and climate research,which can be retrieved by satellite infrared and passive microwave remote sensing instruments.While satellite infrared SST offers high spatial resolution,it is limited by cloud cover.On the other hand,passive microwave SST provides all-weather observation but suffers from poor spatial resolution and susceptibility to environmental factors such as rainfall,coastal effects,and high wind speeds.To achieve high-precision,comprehensive,and high-resolution SST data,it is essential to fuse infrared and microwave SST measurements.In this study,data from the Fengyun-3D(FY-3D)medium resolution spectral imager II(MERSI-II)SST and microwave imager(MWRI)SST were fused.Firstly,the accuracy of both MERSIII SST and MWRI SST was verified,and the latter was bilinearly interpolated to match the 5km resolution grid of MERSI SST.After pretreatment and quality control of MERSI SST and MWRI SST,a Piece-Wise Regression method was employed to correct biases in MWRI SST.Subsequently,SST data were selected based on spatial resolution and accuracy within a 3-day window of the analysis date.Finally,an optimal interpolation method was applied to fuse the FY-3D MERSI-II SST and MWRI SST.The results demonstrated a significant improvement in spatial coverage compared to MERSI-II SST and MWRI SST.Furthermore,the fusion SST retained true spatial distribution details and exhibited an accuracy of–0.12±0.74℃compared to OSTIA SST.This study has improved the accuracy of FY satellite fusion SST products in China. 展开更多
关键词 SST data fusion FY3 INFRARED MICROWAVE
下载PDF
Measuring moisture content of dead fine fuels based on the fusion of spectrum meteorological data
6
作者 Bo Peng Jiawei Zhang +2 位作者 Jian Xing Jiuqing Liu Mingbao Li 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1333-1346,共14页
Dead fine fuel moisture content(DFFMC)is a key factor affecting the spread of forest fires,which plays an important role in evaluation of forest fire risk.In order to achieve high-precision real-time measurement of DF... Dead fine fuel moisture content(DFFMC)is a key factor affecting the spread of forest fires,which plays an important role in evaluation of forest fire risk.In order to achieve high-precision real-time measurement of DFFMC,this study established a long short-term memory(LSTM)network based on particle swarm optimization(PSO)algorithm as a measurement model.A multi-point surface monitoring scheme combining near-infrared measurement method and meteorological measurement method is proposed.The near-infrared spectral information of dead fine fuels and the meteorological factors in the region are processed by data fusion technology to construct a spectral-meteorological data set.The surface fine dead fuel of Mongolian oak(Quercus mongolica Fisch.ex Ledeb.),white birch(Betula platyphylla Suk.),larch(Larix gmelinii(Rupr.)Kuzen.),and Manchurian walnut(Juglans mandshurica Maxim.)in the maoershan experimental forest farm of the Northeast Forestry University were investigated.We used the PSO-LSTM model for moisture content to compare the near-infrared spectroscopy,meteorological,and spectral meteorological fusion methods.The results show that the mean absolute error of the DFFMC of the four stands by spectral meteorological fusion method were 1.1%for Mongolian oak,1.3%for white birch,1.4%for larch,and 1.8%for Manchurian walnut,and these values were lower than those of the near-infrared method and the meteorological method.The spectral meteorological fusion method provides a new way for high-precision measurement of moisture content of fine dead fuel. 展开更多
关键词 Near infrared spectroscopy Meteorological factors data fusion Long-term and short-term memory network Particle swarm optimization algorithm
下载PDF
Method of Multi-Mode Sensor Data Fusion with an Adaptive Deep Coupling Convolutional Auto-Encoder
7
作者 Xiaoxiong Feng Jianhua Liu 《Journal of Sensor Technology》 2023年第4期69-85,共17页
To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features e... To address the difficulties in fusing multi-mode sensor data for complex industrial machinery, an adaptive deep coupling convolutional auto-encoder (ADCCAE) fusion method was proposed. First, the multi-mode features extracted synchronously by the CCAE were stacked and fed to the multi-channel convolution layers for fusion. Then, the fused data was passed to all connection layers for compression and fed to the Softmax module for classification. Finally, the coupling loss function coefficients and the network parameters were optimized through an adaptive approach using the gray wolf optimization (GWO) algorithm. Experimental comparisons showed that the proposed ADCCAE fusion model was superior to existing models for multi-mode data fusion. 展开更多
关键词 Multi-Mode data fusion Coupling Convolutional Auto-Encoder Adaptive Optimization Deep Learning
下载PDF
Bearing fault diagnosis based on a multiple-constraint modal-invariant graph convolutional fusion network
8
作者 Zhongmei Wang Pengxuan Nie +3 位作者 Jianhua Liu Jing He Haibo Wu Pengfei Guo 《High-Speed Railway》 2024年第2期92-100,共9页
Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between... Multisensor data fusionmethod can improve the accuracy of bearing fault diagnosis,in order to address the problems of single-sensor data types and the insufficient exploration of redundancy and complementarity between different modal data in most existing multisensor data fusion methods for bearing fault diagnosis,a bearing fault diagnosis method based on a Multiple-Constraint Modal-Invariant Graph Convolutional Fusion Network(MCMI-GCFN)is proposed in this paper.Firstly,a Convolutional Autoencoder(CAE)and Squeeze-and-Excitation Block(SE block)are used to extract features of raw current and vibration signals.Secondly,the model introduces source domain classifiers and domain discriminators to capture modal invariance between different modal data based on domain adversarial training,making use of the redundancy and complementarity between multimodal data.Then,the spatial aggregation property of Graph Convolutional Neural Networks(GCN)is utilized to capture the dependency relationship between current and vibration modes with similar time step features for accurately fusing contextual semantic information.Finally,the validation is conducted on the public bearing damage current and vibration dataset from Paderborn University.The experimental results showed that the delivered fusion method achieved a bearing fault diagnosis accuracy of 99.6%,which was about 9%–11.4%better than that with nonfusion methods. 展开更多
关键词 Bearing fault diagnosis data fusion Domain adversarial training GCN
下载PDF
Enhancing Surface Soil Moisture Estimation through Integration of Artificial Neural Networks Machine Learning and Fusion of Meteorological, Sentinel-1A and Sentinel-2A Satellite Data
9
作者 Jephter Ondieki Giovanni Laneve +1 位作者 Maria Marsella Collins Mito 《Advances in Remote Sensing》 2023年第4期99-122,共24页
For many environmental and agricultural applications, an accurate estimation of surface soil moisture is essential. This study sought to determine whether combining Sentinel-1A, Sentinel-2A, and meteorological data wi... For many environmental and agricultural applications, an accurate estimation of surface soil moisture is essential. This study sought to determine whether combining Sentinel-1A, Sentinel-2A, and meteorological data with artificial neural networks (ANN) could improve soil moisture estimation in various land cover types. To train and evaluate the model’s performance, we used field data (provided by La Tuscia University) on the study area collected during time periods between October 2022, and December 2022. Surface soil moisture was measured at 29 locations. The performance of the model was trained, validated, and tested using input features in a 60:10:30 ratio, using the feed-forward ANN model. It was found that the ANN model exhibited high precision in predicting soil moisture. The model achieved a coefficient of determination (R<sup>2</sup>) of 0.71 and correlation coefficient (R) of 0.84. Furthermore, the incorporation of Random Forest (RF) algorithms for soil moisture prediction resulted in an improved R<sup>2</sup> of 0.89. The unique combination of active microwave, meteorological data and multispectral data provides an opportunity to exploit the complementary nature of the datasets. Through preprocessing, fusion, and ANN modeling, this research contributes to advancing soil moisture estimation techniques and providing valuable insights for water resource management and agricultural planning in the study area. 展开更多
关键词 Soil Moisture Estimation Techniques fusion Active Microwave Multispectral data Agricultural Planning
下载PDF
Synergy Decision for Radar and IRST Data Fusion 被引量:5
10
作者 窦丽华 杨国胜 +1 位作者 陈杰 侯朝桢 《Journal of Beijing Institute of Technology》 EI CAS 2002年第3期229-233,共5页
A new synergy decision method for radar and infrared search and track (IRST) data fusion is proposed, to solve such problems as how to decrease opportunities for radar suffering from being locked on by adverse electr... A new synergy decision method for radar and infrared search and track (IRST) data fusion is proposed, to solve such problems as how to decrease opportunities for radar suffering from being locked on by adverse electronic support measures (ESM), how to retrieve range information of the target during radar off, and how to detect the maneuver of the target. Firstly, polynomials used to predict target motion states are constructed. Secondly, a set of discriminants for detecting target maneuver are established by comparing the predicted values with the observations from IRST. Thirdly, a set of decisions are presented. Lastly, simulation is performed on the given scenario to test the validity of the method. 展开更多
关键词 IRST RADAR data fusion multi sensor electromagnetic covertness POLYNOMIAL synergy decision approximation
下载PDF
Sensor Registration in Asynchronous Data Fusion 被引量:3
11
作者 胡士强 张天桥 《Journal of Beijing Institute of Technology》 EI CAS 2001年第3期285-290,共6页
To find an effective method to estimate and remove the registration error in asynchronous multisensor system, Kalman filtering technique and least squares approach have been proposed to estimate and remove sensor bia... To find an effective method to estimate and remove the registration error in asynchronous multisensor system, Kalman filtering technique and least squares approach have been proposed to estimate and remove sensor bias and sensor frame tilt errors in multisensor systems with asynchronous data. Simulation results is presented to demonstrate the performance of these approaches. The least squares approach can compress measurements to any time. The Kalman filter algorithm can detect registration errors and use the information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to be fused. 展开更多
关键词 data fusion multisensor system REGISTRATION Kalman filter
下载PDF
RELIABILITY EVALUATION MODEL BASED ON DATA FUSION FOR AIRCRAFT ENGINES 被引量:2
12
作者 王华伟 吴海桥 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第4期318-324,共7页
Reliability evaluation for aircraft engines is difficult because of the scarcity of failure data. But aircraft engine data are available from a variety of sources. Data fusion has the function of maximizing the amount... Reliability evaluation for aircraft engines is difficult because of the scarcity of failure data. But aircraft engine data are available from a variety of sources. Data fusion has the function of maximizing the amount of valu- able information extracted from disparate data sources to obtain the comprehensive reliability knowledge. Consid- ering the degradation failure and the catastrophic failure simultaneously, which are competing risks and can affect the reliability, a reliability evaluation model based on data fusion for aircraft engines is developed, Above the characteristics of the proposed model, reliability evaluation is more feasible than that by only utilizing failure data alone, and is also more accurate than that by only considering single failure mode. Example shows the effective- ness of the proposed model. 展开更多
关键词 aircraft engine reliability evaluation data fusion competing failure condition monitoring
下载PDF
Asynchronous Data Fusion of Two Different Sensors 被引量:2
13
作者 戴亚平 王军政 《Journal of Beijing Institute of Technology》 EI CAS 2001年第4期402-405,共4页
An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitt... An algorithm is presented for fusion of tracks created by radar and IR sensor which have different dimensional measurement data. It’s assumed that these sensors are asynchronous and the measurement data are transmitted to a central station at different rates. By means of the technique of time matching, two sets of asynchronous data are fused and then the filter is updated according to the fused information. The results show that the accuracy of the filter effect has been improved. 展开更多
关键词 target tracking multi sensor data fusion
下载PDF
Distributed Computation Models for Data Fusion System Simulation
14
作者 张岩 曾涛 +1 位作者 龙腾 崔智社 《Journal of Beijing Institute of Technology》 EI CAS 2001年第3期291-297,共7页
An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advan... An attempt has been made to develop a distributed software infrastructure model for onboard data fusion system simulation, which is also applied to netted radar systems, onboard distributed detection systems and advanced C3I systems. Two architectures are provided and verified: one is based on pure TCP/IP protocol and C/S model, and implemented with Winsock, the other is based on CORBA (common object request broker architecture). The performance of data fusion simulation system, i.e. reliability, flexibility and scalability, is improved and enhanced by two models. The study of them makes valuable explore on incorporating the distributed computation concepts into radar system simulation techniques. 展开更多
关键词 radar system computer network data fusion SIMULATION distributed computation
下载PDF
Multisensor Data Fusion for High Quality Data Analysis and Processing in Measurement and Instrumentation 被引量:13
15
作者 Yan-bo Huang Yu-bin Lan +1 位作者 W. C. Hoffmann R. E. Lacey 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第1期53-62,共10页
Multisensor data fusion (MDF) is an emerging technology to fuse data from multiple sensors in order to make a more accurate estimation of the environment through measurement and detection. Applications of MDF cross ... Multisensor data fusion (MDF) is an emerging technology to fuse data from multiple sensors in order to make a more accurate estimation of the environment through measurement and detection. Applications of MDF cross a wide spectrum in military and civilian areas. With the rapid evolution of computers and the proliferation of micro-mechanical/electrical systems sensors, the utilization of MDF is being popularized in research and applications. This paper focuses on application of MDF for high quality data analysis and processing in measurement and instrumentation. A practical, general data fusion scheme was established on the basis of feature extraction and merge of data from multiple sensors. This scheme integrates artificial neural networks for high performance pattern recognition. A number of successful applications in areas of NDI (Non-Destructive Inspection) corrosion detection, food quality and safety characterization, and precision agriculture are described and discussed in order to motivate new applications in these or other areas. This paper gives an overall picture of using the MDF method to increase the accuracy of data analysis and processing in measurement and instrumentation in different areas of applications. 展开更多
关键词 multisensor data fusion artificial neural networks NDI food quality and safety characterization precision agriculture
下载PDF
Research on Kalman-filter based multisensor data fusion 被引量:12
16
作者 Chen Yukun Si Xicai Li Zhigang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期497-502,共6页
Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigat... Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method. 展开更多
关键词 MULTISENSOR data fusion Kalman filter.
下载PDF
Weighted Multi-sensor Data Level Fusion Method of Vibration Signal Based on Correlation Function 被引量:7
17
作者 BIN Guangfu JIANG Zhinong +1 位作者 LI Xuejun DHILLON B S 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第5期899-904,共6页
As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery... As the differences of sensor's precision and some random factors are difficult to control,the actual measurement signals are far from the target signals that affect the reliability and precision of rotating machinery fault diagnosis.The traditional signal processing methods,such as classical inference and weighted averaging algorithm usually lack dynamic adaptability that is easy for trends to cause the faults to be misjudged or left out.To enhance the measuring veracity and precision of vibration signal in rotary machine multi-sensor vibration signal fault diagnosis,a novel data level fusion approach is presented on the basis of correlation function analysis to fast determine the weighted value of multi-sensor vibration signals.The approach doesn't require knowing the prior information about sensors,and the weighted value of sensors can be confirmed depending on the correlation measure of real-time data tested in the data level fusion process.It gives greater weighted value to the greater correlation measure of sensor signals,and vice versa.The approach can effectively suppress large errors and even can still fuse data in the case of sensor failures because it takes full advantage of sensor's own-information to determine the weighted value.Moreover,it has good performance of anti-jamming due to the correlation measures between noise and effective signals are usually small.Through the simulation of typical signal collected from multi-sensors,the comparative analysis of dynamic adaptability and fault tolerance between the proposed approach and traditional weighted averaging approach is taken.Finally,the rotor dynamics and integrated fault simulator is taken as an example to verify the feasibility and advantages of the proposed approach,it is shown that the multi-sensor data level fusion based on correlation function weighted approach is better than the traditional weighted average approach with respect to fusion precision and dynamic adaptability.Meantime,the approach is adaptable and easy to use,can be applied to other areas of vibration measurement. 展开更多
关键词 vibration signal MULTI-SENSOR data level fusion correlation function weighted value
下载PDF
STUDY ON THE COAL-ROCK INTERFACE RECOGNITION METHOD BASED ON MULTI-SENSOR DATA FUSION TECHNIQUE 被引量:7
18
作者 Ren FangYang ZhaojianXiong ShiboResearch Institute of Mechano-Electronic Engineering,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期321-324,共4页
The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data... The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones. 展开更多
关键词 Coal-rock interface recognition (CIR) data fusion (DF) MULTI-SENSOR
下载PDF
Data Fusion in Distributed Multi-sensor System 被引量:7
19
作者 GUOHang YUMin 《Geo-Spatial Information Science》 2004年第3期214-217,234,共5页
This paper presents a data fusion method in distributed multi-sensor system including GPS and INS sensors’ data processing. First, a residual χ 2 \|test strategy with the corresponding algorithm is designed. Then a ... This paper presents a data fusion method in distributed multi-sensor system including GPS and INS sensors’ data processing. First, a residual χ 2 \|test strategy with the corresponding algorithm is designed. Then a coefficient matrices calculation method of the information sharing principle is derived. Finally, the federated Kalman filter is used to combine these independent, parallel, real\|time data. A pseudolite (PL) simulation example is given. 展开更多
关键词 PSEUDOLITE distributed multi-sensor system data fusion federated Kalman filtering
下载PDF
Deep Learning Based Data Fusion for Sensor Fault Diagnosis and Tolerance in Autonomous Vehicles 被引量:7
20
作者 Huihui Pan Weichao Sun +1 位作者 Qiming Sun Huijun Gao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期158-168,共11页
Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors ... Environmental perception is one of the key technologies to realize autonomous vehicles.Autonomous vehicles are often equipped with multiple sensors to form a multi-source environmental perception system.Those sensors are very sensitive to light or background conditions,which will introduce a variety of global and local fault signals that bring great safety risks to autonomous driving system during long-term running.In this paper,a real-time data fusion network with fault diagnosis and fault tolerance mechanism is designed.By introducing prior features to realize the lightweight network,the features of the input data can be extracted in real time.A new sensor reliability evaluation method is proposed by calculating the global and local confidence of sensors.Through the temporal and spatial correlation between sensor data,the sensor redundancy is utilized to diagnose the local and global confidence level of sensor data in real time,eliminate the fault data,and ensure the accuracy and reliability of data fusion.Experiments show that the network achieves state-of-the-art results in speed and accuracy,and can accurately detect the location of the target when some sensors are out of focus or out of order.The fusion framework proposed in this paper is proved to be effective for intelligent vehicles in terms of real-time performance and reliability. 展开更多
关键词 Autonomous vehicles Fault diagnosis and tolerance Object detection data fusion
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部