To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measur...To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measurements,and a data-mining method.The simulation is based on a computational thermal-fluid dynamics(CtFD)model,which can obtain thermal behavior,solidification parameters such as cooling rate,and the dilution of solidified clad.Based on the computed thermal information,dendrite arm spacing and microhardness are estimated using well-tested mechanistic models.Experimental microstructure and microhardness are determined and compared with the simulated values for validation.To visualize process-structure-properties(PSPs)linkages,the simulation and experimental datasets are input to a data-mining model-a self-organizing map(SOM).The design windows of the process parameters under multiple objectives can be obtained from the visualized maps.The proposed approaches can be utilized in AM and other data-intensive processes.Data-driven linkages between process,structure,and properties have the potential to benefit online process monitoring control in order to derive an ideal microstructure and mechanical properties.展开更多
Conventional soil maps generally contain one or more soil types within a single soil polygon.But their geographic locations within the polygon are not specified.This restricts current applications of the maps in site-...Conventional soil maps generally contain one or more soil types within a single soil polygon.But their geographic locations within the polygon are not specified.This restricts current applications of the maps in site-specific agricultural management and environmental modelling.We examined the utility of legacy pedon data for disaggregating soil polygons and the effectiveness of similarity-based prediction for making use of the under-or over-sampled legacy pedon data for the disaggregation.The method consisted of three steps.First,environmental similarities between the pedon sites and each location were computed based on soil formative environmental factors.Second,according to soil types of the pedon sites,the similarities were aggregated to derive similarity distribution for each soil type.Third,a hardening process was performed on the maps to allocate candidate soil types within the polygons.The study was conducted at the soil subgroup level in a semi-arid area situated in Manitoba,Canada.Based on 186 independent pedon sites,the evaluation of the disaggregated map of soil subgroups showed an overall accuracy of 67% and a Kappa statistic of 0.62.The map represented a better spatial pattern of soil subgroups in both detail and accuracy compared to a dominant soil subgroup map,which was commonly used in practice.Incorrect predictions mainly occurred in the agricultural plain area and the soil subgroups that are very similar in taxonomy,indicating that new environmental covariates need to be developed.We concluded that the combination of legacy pedon data with similarity-based prediction is an effective solution for soil polygon disaggregation.展开更多
地质图是地质信息最重要的载体之一,凝聚了人们对地质理论的研究成果和对地质过程的理解。随着大数据时代的到来,地质制图的指导理论和方法手段发生了翻天覆地的变化,全球的科学家运用新方法新技术建立了OneGeology、OpenGeoscience、NG...地质图是地质信息最重要的载体之一,凝聚了人们对地质理论的研究成果和对地质过程的理解。随着大数据时代的到来,地质制图的指导理论和方法手段发生了翻天覆地的变化,全球的科学家运用新方法新技术建立了OneGeology、OpenGeoscience、NGMDB、地质云等一系列地质图相关的优秀数据库,这些数据库的有效运行为全球的地质工作者提供了海量的地学数据和便捷的信息服务。此次研究重点调研了国内外已有的地质图相关数据库及运行情况,为Deep-Time Digital Earth(DDE)计划整合全球地质图相关数据库、建设相关数据平台提供经验和基础;同时,回顾了地质制图的发展历史,介绍了与地质制图相关的技术手段和常用软件;最后,为了满足大数据时代经济社会对地质图信息资料服务的需求,结合DDE相关任务,对深化国际合作编图、创新计算机智能地质制图及网络共享服务等核心技术提出了新的展望。展开更多
基金Jian Cao,Gregory J.Wagner,and Wing K.Liu acknowledge support from the National Science Foundation(NSF)Cyber-Physical Systems(CPS)(CPS/CMMI-1646592)Hengyang Li acknowledges support from the Northwestern Data Science Initiative(DSI+6 种基金171474500210043324)Jian Cao,Gregory J.Wagner,Wing K.Liu,Jennifer L.Bennett,and Sarah J.Wolff acknowledge support from the Digital Manufacturing and Design Innovation Institute(DMDII15-07)Jian Cao,Wing K.Liu,Zhengtao Gan,and Jennifer L.Bennett acknowledge support from the Center for Hierarchical Materials Design(CHiMaD70NANB14H012)This work made use of facilities at DMG MORI and Northwestern UniversityIt also made use of the MatCI Facility,which receives support from the MRSEC Program(NSF DMR-168 1720139)of the Materials Research Center at Northwestern University.
文摘To design microstructure and microhardness in the additive manufacturing(AM)of nickel(Ni)-based superalloys,the present work develops a novel data-driven approach that combines physics-based models,experimental measurements,and a data-mining method.The simulation is based on a computational thermal-fluid dynamics(CtFD)model,which can obtain thermal behavior,solidification parameters such as cooling rate,and the dilution of solidified clad.Based on the computed thermal information,dendrite arm spacing and microhardness are estimated using well-tested mechanistic models.Experimental microstructure and microhardness are determined and compared with the simulated values for validation.To visualize process-structure-properties(PSPs)linkages,the simulation and experimental datasets are input to a data-mining model-a self-organizing map(SOM).The design windows of the process parameters under multiple objectives can be obtained from the visualized maps.The proposed approaches can be utilized in AM and other data-intensive processes.Data-driven linkages between process,structure,and properties have the potential to benefit online process monitoring control in order to derive an ideal microstructure and mechanical properties.
基金supported by the National Natural Science Foundation of China (41130530,91325301,41431177,41571212,41401237)the Project of "One-Three-Five" Strategic Planning & Frontier Sciences of the Institute of Soil Science,Chinese Academy of Sciences (ISSASIP1622)+1 种基金the Government Interest Related Program between Canadian Space Agency and Agriculture and Agri-Food,Canada (13MOA01002)the Natural Science Research Program of Jiangsu Province (14KJA170001)
文摘Conventional soil maps generally contain one or more soil types within a single soil polygon.But their geographic locations within the polygon are not specified.This restricts current applications of the maps in site-specific agricultural management and environmental modelling.We examined the utility of legacy pedon data for disaggregating soil polygons and the effectiveness of similarity-based prediction for making use of the under-or over-sampled legacy pedon data for the disaggregation.The method consisted of three steps.First,environmental similarities between the pedon sites and each location were computed based on soil formative environmental factors.Second,according to soil types of the pedon sites,the similarities were aggregated to derive similarity distribution for each soil type.Third,a hardening process was performed on the maps to allocate candidate soil types within the polygons.The study was conducted at the soil subgroup level in a semi-arid area situated in Manitoba,Canada.Based on 186 independent pedon sites,the evaluation of the disaggregated map of soil subgroups showed an overall accuracy of 67% and a Kappa statistic of 0.62.The map represented a better spatial pattern of soil subgroups in both detail and accuracy compared to a dominant soil subgroup map,which was commonly used in practice.Incorrect predictions mainly occurred in the agricultural plain area and the soil subgroups that are very similar in taxonomy,indicating that new environmental covariates need to be developed.We concluded that the combination of legacy pedon data with similarity-based prediction is an effective solution for soil polygon disaggregation.
文摘地质图是地质信息最重要的载体之一,凝聚了人们对地质理论的研究成果和对地质过程的理解。随着大数据时代的到来,地质制图的指导理论和方法手段发生了翻天覆地的变化,全球的科学家运用新方法新技术建立了OneGeology、OpenGeoscience、NGMDB、地质云等一系列地质图相关的优秀数据库,这些数据库的有效运行为全球的地质工作者提供了海量的地学数据和便捷的信息服务。此次研究重点调研了国内外已有的地质图相关数据库及运行情况,为Deep-Time Digital Earth(DDE)计划整合全球地质图相关数据库、建设相关数据平台提供经验和基础;同时,回顾了地质制图的发展历史,介绍了与地质制图相关的技术手段和常用软件;最后,为了满足大数据时代经济社会对地质图信息资料服务的需求,结合DDE相关任务,对深化国际合作编图、创新计算机智能地质制图及网络共享服务等核心技术提出了新的展望。