The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside...The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers.展开更多
We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-r...We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-resolution remote sensing (RS) satellite images. Deforestation identified in this way (hereafter, RSD) was compared to administrative data on deforestation. We also compared high-resolution satellite images (HR-RSD) and actual deforestation based on categories which were Intergovernmental Panel on Climate Change data. RSD generated by medium-resolution satellite images overesti- mated the amount of deforested area by 1.5-2.4 times the actual deforested area, whereas RSD generated by HR- RSD underestimated the amount of deforested area by 0.4-0.9 times the actual area. The highest degree of matching (90 %) was found in HR-RSD with a grid interval of 500 m and the accuracy of HR-RSD was the highest, at 67 %. The results also revealed that the largest cause of deforestation was the establishment of settlements followed by conversion to cropland and grassland. We conclude that for the identification of deforestation using satellite images, HR-RSD with a grid interval of 500 m is most suitable.展开更多
The study area is located between the cities of Comitan (16°10'43"N and 92°04'20''W) a city with 150,000 inhabitants and La Esperanza (16°9'15''N and 91°...The study area is located between the cities of Comitan (16°10'43"N and 92°04'20''W) a city with 150,000 inhabitants and La Esperanza (16°9'15''N and 91°52'5''W) a town with 3000 inhabitants. Both weather stations are 30 km from each other in the Chiapas State, México. 54 years of daily records of the series of maximum (<em>t</em><sub>max</sub>) and minimum temperatures (<em>t</em><sub>min</sub>) of the weather station 07205 Comitan that is on top of a house and 30 years of daily records of the weather station 07374 La Esperanza were analyzed. The objective is to analyze the evidence of climate change in the Comitan valley. 2.07% and 19.04% of missing data were filled, respectively, with the WS method. In order to verify homogeneity three methods were used: Standard Normal Homogeneity Test (SNHT), the Von Neumann method and the Buishand method. The heterogeneous series were homogenized using climatol. The trends of <em>t</em><sub>max</sub> and <em>t</em><sub>min</sub> for both weather stations were analyzed by simple linear regression, Sperman’s rho and Mann-Kendall tests. The Mann-Kendal test method confirmed the warming trend at the Comitan station for both variables with <em>Z<sub>MK</sub></em> statistic values equal to 1.57 (statistically not significant) and 4.64 (statistically significant). However, for the Esperanza station, it determined a cooling trend for tmin and a slight non-significant warming for <em>t</em><sub>max</sub> with a <em>Z</em><sub><em>MK</em></sub> statistic of -2.27 (statistically significant) and 1.16 (statistically not significant), for a significance level <em>α</em> = 0.05.展开更多
As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North Am...As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North America as elsewhere in the world,changes in water resources strongly impact agriculture and animal husbandry.From a combination of Gravity Recovery and Climate Experiment(GRACE) gravity and Global Positioning System(GPS) data,it is recently found that water storage from August,2002 to March,2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005.In this paper,we use GRACE monthly gravity data of Release 5 to track the water storage change from August,2002 to June,2014.In Canadian Prairies and the Great Lakes areas,the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a,which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error.We also find a long term decrease of water storage at a rate of-12.0 ± 4.2 Gt/a in Ungava Peninsula,possibly due to permafrost degradation and less snow accumulation during the winter in the region.In addition,the effect of total mass gain in the surveyed area,on present-day sea level,amounts to-0.18 mm/a,and thus should be taken into account in studies of global sea level change.展开更多
In this paper we present a series of monthly gravity field solutions from Gravity Recovery and Climate Experiment(GRACE) range measurements using modified short arc approach,in which the ambiguity of range measureme...In this paper we present a series of monthly gravity field solutions from Gravity Recovery and Climate Experiment(GRACE) range measurements using modified short arc approach,in which the ambiguity of range measurements is eliminated via differentiating two adjacent range measurements.The data used for developing our monthly gravity field model are same as Tongji-GRACEOl model except that the range measurements are used to replace the range rate measurements,and our model is truncated to degree and order 60,spanning Jan.2004 to Dec.2010 also same as Tongji-GRACE01 model.Based on the comparison results of the C_(2,0),C_(2,1),S_(2,1),and C_(15,15),S_(15,15),time series and the global mass change signals as well as the mass change time series in Amazon area of our model with those of Tongji-GRACE01 model,we can conclude that our monthly gravity field model is comparable with Tongji-GRACE01 monthly model.展开更多
Global climate change has been found to substantially influence the phenology of rangeland,especially on the Tibetan Plateau. However, there is considerable controversy about the trends and causes of rangeland phenolo...Global climate change has been found to substantially influence the phenology of rangeland,especially on the Tibetan Plateau. However, there is considerable controversy about the trends and causes of rangeland phenology owing to different phenological exploration methods and lack of ground validation. Little is known about the uncertainty in the exploration accuracy of vegetation phenology.Therefore, in this study, we selected a typical alpine rangeland near Damxung national meteorological station as a case study on central Tibetan Plateau, and identified several important sources influencing phenology to better understand their effects on phenological exploration. We found man-made land use was not easily distinguished from natural rangelands, and therefore this may confound phenological response to climate change in the rangeland. Change trends of phenology explored by four methods were similar, but ratio threshold method(RTM) was more suitable for exploring vegetation phenology in terms of the beginning of growing season(BGS) and end of growing season(EGS). However, some adjustments are needed when RTM is used in extreme drought years. MODIS NDVI/EVI dataset was most suitable for exploring vegetation phenology of BGS and EGS. The discrimination capacities of vegetation phenology declined with decreasing resolution of remote sensing images from MODIS to GIMMS AVHRR datasets. Additionally, distinct trends of phenological change rates were indicated in different terrain conditions, with advance of growing season in high altitudes but delay of season in lower altitudes. Therefore, it was necessary to eliminate interference of complex terrain and man-made land use to ensure the representativeness of natural vegetation. Moreover, selecting the appropriate method to explore rangelands and fully considering the impact of topography are important to accurately analyze the effects of climate change on vegetation phenology.展开更多
Four different states of Si15Sb85 and Ge2Sb2Te5 phase change memory thin films are obtained by crystallization degree modulation through laser initialization at different powers or annealing at different temperatures....Four different states of Si15Sb85 and Ge2Sb2Te5 phase change memory thin films are obtained by crystallization degree modulation through laser initialization at different powers or annealing at different temperatures. The polarization characteristics of these two four-level phase change recording media are analyzed systematically. A simple and effective readout scheme is then proposed, and the readout signal is numerically simulated. The results show that a high-contrast polarization readout can be obtained in an extensive wavelength range for the four-level phase change recording media using common phase change materials. This study will help in-depth understanding of the physical mechanisms and provide technical approaches to multilevel phase change recording.展开更多
The Gravity Recovery and Climate Experiment(GRACE) mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field.We obtained monthly gravity field solutions based on varia...The Gravity Recovery and Climate Experiment(GRACE) mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field.We obtained monthly gravity field solutions based on variational equations approach from GPS-derived positions of GRACE satellites and K-band range-rate measurements.The impact of different fixed data weighting ratios in temporal gravity field recovery while combining the two types of data was investigated for the purpose of deriving the best combined solution.The monthly gravity field solution obtained through above procedures was named as the Institute of Geodesy and Geophysics(IGG) temporal gravity field models.IGG temporal gravity field models were compared with GRACE Release05(RL05) products in following aspects:(i) the trend of the mass anomaly in China and its nearby regions within 2005-2010; (ii) the root mean squares of the global mass anomaly during 2005-2010; (iii) time-series changes in the mean water storage in the region of the Amazon Basin and the Sahara Desert between 2005 and 2010.The results showed that IGG solutions were almost consistent with GRACE RL05 products in above aspects(i)-(iii).Changes in the annual amplitude of mean water storage in the Amazon Basin were 14.7 ± 1.2 cm for IGG,17.1 ± 1.3 cm for the Centre for Space Research(CSR),16.4 ± 0.9 cm for the GeoForschungsZentrum(GFZ) and 16.9 ± 1.2 cm for the Jet Propulsion Laboratory(JPL) in terms of equivalent water height(EWH),respectively.The root mean squares of the mean mass anomaly in Sahara were 1.2 cm,0.9 cm,0.9 cm and 1.2 cm for temporal gravity field models of IGG,CSR,GFZ and JPL,respectively.Comparison suggested that IGG temporal gravity field solutions were at the same accuracy level with the latest temporal gravity field solutions published by CSR,GFZ and JPL.展开更多
The prediction of Exhaust Gas Temperature Margin(EGTM)after washing aeroengines can provide a theoretical basis for airlines not only to evaluate the energy-saving effect and emission reduction,but also to formulate r...The prediction of Exhaust Gas Temperature Margin(EGTM)after washing aeroengines can provide a theoretical basis for airlines not only to evaluate the energy-saving effect and emission reduction,but also to formulate reasonable maintenance plans.However,the EGTM encounters step changes after washing aeroengines,while,in the traditional models,a persistence tendency exists between the prediction results and the previous data,resulting in low accuracy in prediction.In order to solve the problem,this paper develops a step parameters prediction model based on Transfer Process Neural Networks(TPNN).Especially,“step parameters”represent the parameters that can reflect EGTM step changes.They are analyzed in this study,and thus the model concentrates on the prediction of step changes rather than the extension of data trends.Transfer learning is used to handle the problem that few cleaning records result in few step changes for model learning.In comparison with Long Short-Term Memory(LSTM)and Kernel Extreme Learning Machine(KELM)models,the effectiveness of the proposed method is verified on CFM56-5B engine data.展开更多
The distribution characteristics of the impact craters can provide a large amount of information on impact history and the lunar evolution process. In this research, based on the digital elevation model (DEM) data o...The distribution characteristics of the impact craters can provide a large amount of information on impact history and the lunar evolution process. In this research, based on the digital elevation model (DEM) data originating from Change'E-1 CCD stereo camera, three automatic extraction methods for the impact craters are implemented in two research areas: direct extraction from flooded DEM data (the Flooded method), object-oriented extraction from DEM data by using ENVI ZOOM function (the Object-Oriented method) and novel object-oriented extraction from flooded DEM data (the Flooded Object-Oriented method). Accuracy assessment, extracted degree computation, cumulative frequency analysis, shape and age analysis of the extracted craters combined display the following results. (1) The Flooded Object-Oriented method yields better accuracy than the other two methods in the two research areas; the extraction result of the Flooded method offers the similar accuracy to that of the Object-Oriented method. (2) The cumulative frequency curves for the extracted craters and the confirmed craters share a simi- lar change trajectory. (3) The number of the impact craters extracted by the three methods in the Imbrian period is the largest and is of various types; as to their age earlier than lmbrain, it is difficult to extract because they could have been destroyed.展开更多
基金supported by proposal No.OSD/BCUD/392/197 Board of Colleges and University Development,Savitribai Phule Pune University,Pune
文摘The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers.
文摘We evaluated the use of spatial sampling and satellite images to identify deforested areas in Wonju, South Korea. The changes in land cover were identified using a grid of sample points overlaid onto medium and high-resolution remote sensing (RS) satellite images. Deforestation identified in this way (hereafter, RSD) was compared to administrative data on deforestation. We also compared high-resolution satellite images (HR-RSD) and actual deforestation based on categories which were Intergovernmental Panel on Climate Change data. RSD generated by medium-resolution satellite images overesti- mated the amount of deforested area by 1.5-2.4 times the actual deforested area, whereas RSD generated by HR- RSD underestimated the amount of deforested area by 0.4-0.9 times the actual area. The highest degree of matching (90 %) was found in HR-RSD with a grid interval of 500 m and the accuracy of HR-RSD was the highest, at 67 %. The results also revealed that the largest cause of deforestation was the establishment of settlements followed by conversion to cropland and grassland. We conclude that for the identification of deforestation using satellite images, HR-RSD with a grid interval of 500 m is most suitable.
文摘The study area is located between the cities of Comitan (16°10'43"N and 92°04'20''W) a city with 150,000 inhabitants and La Esperanza (16°9'15''N and 91°52'5''W) a town with 3000 inhabitants. Both weather stations are 30 km from each other in the Chiapas State, México. 54 years of daily records of the series of maximum (<em>t</em><sub>max</sub>) and minimum temperatures (<em>t</em><sub>min</sub>) of the weather station 07205 Comitan that is on top of a house and 30 years of daily records of the weather station 07374 La Esperanza were analyzed. The objective is to analyze the evidence of climate change in the Comitan valley. 2.07% and 19.04% of missing data were filled, respectively, with the WS method. In order to verify homogeneity three methods were used: Standard Normal Homogeneity Test (SNHT), the Von Neumann method and the Buishand method. The heterogeneous series were homogenized using climatol. The trends of <em>t</em><sub>max</sub> and <em>t</em><sub>min</sub> for both weather stations were analyzed by simple linear regression, Sperman’s rho and Mann-Kendall tests. The Mann-Kendal test method confirmed the warming trend at the Comitan station for both variables with <em>Z<sub>MK</sub></em> statistic values equal to 1.57 (statistically not significant) and 4.64 (statistically significant). However, for the Esperanza station, it determined a cooling trend for tmin and a slight non-significant warming for <em>t</em><sub>max</sub> with a <em>Z</em><sub><em>MK</em></sub> statistic of -2.27 (statistically significant) and 1.16 (statistically not significant), for a significance level <em>α</em> = 0.05.
基金supported by National Natural Science Foundation of China(Grant Nos.41431070,41174016,41274026,41274024,41321063)National Key Basic Research Program of China(973 Program,2012CB957703)+1 种基金CAS/SAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-05)The Chinese Academy of Sciences
文摘As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North America as elsewhere in the world,changes in water resources strongly impact agriculture and animal husbandry.From a combination of Gravity Recovery and Climate Experiment(GRACE) gravity and Global Positioning System(GPS) data,it is recently found that water storage from August,2002 to March,2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005.In this paper,we use GRACE monthly gravity data of Release 5 to track the water storage change from August,2002 to June,2014.In Canadian Prairies and the Great Lakes areas,the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a,which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error.We also find a long term decrease of water storage at a rate of-12.0 ± 4.2 Gt/a in Ungava Peninsula,possibly due to permafrost degradation and less snow accumulation during the winter in the region.In addition,the effect of total mass gain in the surveyed area,on present-day sea level,amounts to-0.18 mm/a,and thus should be taken into account in studies of global sea level change.
基金sponsored by National Natural Science Foundation of China(41474017)National Key Basic Research Program of China(973 Program+3 种基金2012CB957703)sponsored by National Natural Science Foundation of China(41274035)State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2013-3-2-Z,SKLGED2014-1-3-E)State Key Laboratory of Geo-Information Engineering(SKLGIE2014-M-1-2)
文摘In this paper we present a series of monthly gravity field solutions from Gravity Recovery and Climate Experiment(GRACE) range measurements using modified short arc approach,in which the ambiguity of range measurements is eliminated via differentiating two adjacent range measurements.The data used for developing our monthly gravity field model are same as Tongji-GRACEOl model except that the range measurements are used to replace the range rate measurements,and our model is truncated to degree and order 60,spanning Jan.2004 to Dec.2010 also same as Tongji-GRACE01 model.Based on the comparison results of the C_(2,0),C_(2,1),S_(2,1),and C_(15,15),S_(15,15),time series and the global mass change signals as well as the mass change time series in Amazon area of our model with those of Tongji-GRACE01 model,we can conclude that our monthly gravity field model is comparable with Tongji-GRACE01 monthly model.
基金supported by the National Natural Science Foundation of China (41271067)National key research and development program (2016YFC0502001)
文摘Global climate change has been found to substantially influence the phenology of rangeland,especially on the Tibetan Plateau. However, there is considerable controversy about the trends and causes of rangeland phenology owing to different phenological exploration methods and lack of ground validation. Little is known about the uncertainty in the exploration accuracy of vegetation phenology.Therefore, in this study, we selected a typical alpine rangeland near Damxung national meteorological station as a case study on central Tibetan Plateau, and identified several important sources influencing phenology to better understand their effects on phenological exploration. We found man-made land use was not easily distinguished from natural rangelands, and therefore this may confound phenological response to climate change in the rangeland. Change trends of phenology explored by four methods were similar, but ratio threshold method(RTM) was more suitable for exploring vegetation phenology in terms of the beginning of growing season(BGS) and end of growing season(EGS). However, some adjustments are needed when RTM is used in extreme drought years. MODIS NDVI/EVI dataset was most suitable for exploring vegetation phenology of BGS and EGS. The discrimination capacities of vegetation phenology declined with decreasing resolution of remote sensing images from MODIS to GIMMS AVHRR datasets. Additionally, distinct trends of phenological change rates were indicated in different terrain conditions, with advance of growing season in high altitudes but delay of season in lower altitudes. Therefore, it was necessary to eliminate interference of complex terrain and man-made land use to ensure the representativeness of natural vegetation. Moreover, selecting the appropriate method to explore rangelands and fully considering the impact of topography are important to accurately analyze the effects of climate change on vegetation phenology.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61178059 and 61137002)the Key Program of the Science and Technology Commission of Shanghai Municipality,China(Grant No.11jc1413300)
文摘Four different states of Si15Sb85 and Ge2Sb2Te5 phase change memory thin films are obtained by crystallization degree modulation through laser initialization at different powers or annealing at different temperatures. The polarization characteristics of these two four-level phase change recording media are analyzed systematically. A simple and effective readout scheme is then proposed, and the readout signal is numerically simulated. The results show that a high-contrast polarization readout can be obtained in an extensive wavelength range for the four-level phase change recording media using common phase change materials. This study will help in-depth understanding of the physical mechanisms and provide technical approaches to multilevel phase change recording.
基金funded by the Major National Scientific Research Plan(2013CB733305,2012CB957703)the National Natural Science Foundation of China(41174066,41131067,41374087,41431070)
文摘The Gravity Recovery and Climate Experiment(GRACE) mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field.We obtained monthly gravity field solutions based on variational equations approach from GPS-derived positions of GRACE satellites and K-band range-rate measurements.The impact of different fixed data weighting ratios in temporal gravity field recovery while combining the two types of data was investigated for the purpose of deriving the best combined solution.The monthly gravity field solution obtained through above procedures was named as the Institute of Geodesy and Geophysics(IGG) temporal gravity field models.IGG temporal gravity field models were compared with GRACE Release05(RL05) products in following aspects:(i) the trend of the mass anomaly in China and its nearby regions within 2005-2010; (ii) the root mean squares of the global mass anomaly during 2005-2010; (iii) time-series changes in the mean water storage in the region of the Amazon Basin and the Sahara Desert between 2005 and 2010.The results showed that IGG solutions were almost consistent with GRACE RL05 products in above aspects(i)-(iii).Changes in the annual amplitude of mean water storage in the Amazon Basin were 14.7 ± 1.2 cm for IGG,17.1 ± 1.3 cm for the Centre for Space Research(CSR),16.4 ± 0.9 cm for the GeoForschungsZentrum(GFZ) and 16.9 ± 1.2 cm for the Jet Propulsion Laboratory(JPL) in terms of equivalent water height(EWH),respectively.The root mean squares of the mean mass anomaly in Sahara were 1.2 cm,0.9 cm,0.9 cm and 1.2 cm for temporal gravity field models of IGG,CSR,GFZ and JPL,respectively.Comparison suggested that IGG temporal gravity field solutions were at the same accuracy level with the latest temporal gravity field solutions published by CSR,GFZ and JPL.
基金supported by the National Natural Science Foundation of China(No.1733201)。
文摘The prediction of Exhaust Gas Temperature Margin(EGTM)after washing aeroengines can provide a theoretical basis for airlines not only to evaluate the energy-saving effect and emission reduction,but also to formulate reasonable maintenance plans.However,the EGTM encounters step changes after washing aeroengines,while,in the traditional models,a persistence tendency exists between the prediction results and the previous data,resulting in low accuracy in prediction.In order to solve the problem,this paper develops a step parameters prediction model based on Transfer Process Neural Networks(TPNN).Especially,“step parameters”represent the parameters that can reflect EGTM step changes.They are analyzed in this study,and thus the model concentrates on the prediction of step changes rather than the extension of data trends.Transfer learning is used to handle the problem that few cleaning records result in few step changes for model learning.In comparison with Long Short-Term Memory(LSTM)and Kernel Extreme Learning Machine(KELM)models,the effectiveness of the proposed method is verified on CFM56-5B engine data.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40871177 and 41171332)the Knowledge Innovation Project of the Institute of Geographic and Natural Resources Research, the Chinese Academy of Sci-ences (Grant No. 201001005)
文摘The distribution characteristics of the impact craters can provide a large amount of information on impact history and the lunar evolution process. In this research, based on the digital elevation model (DEM) data originating from Change'E-1 CCD stereo camera, three automatic extraction methods for the impact craters are implemented in two research areas: direct extraction from flooded DEM data (the Flooded method), object-oriented extraction from DEM data by using ENVI ZOOM function (the Object-Oriented method) and novel object-oriented extraction from flooded DEM data (the Flooded Object-Oriented method). Accuracy assessment, extracted degree computation, cumulative frequency analysis, shape and age analysis of the extracted craters combined display the following results. (1) The Flooded Object-Oriented method yields better accuracy than the other two methods in the two research areas; the extraction result of the Flooded method offers the similar accuracy to that of the Object-Oriented method. (2) The cumulative frequency curves for the extracted craters and the confirmed craters share a simi- lar change trajectory. (3) The number of the impact craters extracted by the three methods in the Imbrian period is the largest and is of various types; as to their age earlier than lmbrain, it is difficult to extract because they could have been destroyed.