In this paper,an interactive method is proposed to describe computer animation data and accelerate the process of animation generation.First,a semantic model and a resource description framework(RDF)are utilized to an...In this paper,an interactive method is proposed to describe computer animation data and accelerate the process of animation generation.First,a semantic model and a resource description framework(RDF)are utilized to analyze and describe the relationships between animation data.Second,a novel context model which is able to keep the context-awareness was proposed to facilitate data organization and storage.In our context model,all the main animation elements in a scene are operated as a whole.Then sketch is utilized as the main interactive method to describe the relationships between animation data,edit the context model and make some other user operations.Finally,a context-aware computer animation data description system based on sketch is generated and it also works well in animation generation process.展开更多
Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative efficiency of decision making units (DMUs) on the basis of multiple inputs and outputs. The context-dependent DEA is introduced to...Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative efficiency of decision making units (DMUs) on the basis of multiple inputs and outputs. The context-dependent DEA is introduced to measure the relative attractiveness of a particular DMU when compared to others. In real-world situation, because of incomplete or non-obtainable information, the data (Input and Output) are often not so deterministic, therefore they usually are imprecise data such as interval data, hence the DEA models becomes a nonlinear programming problem and is called imprecise DEA (IDEA). In this paper the context-dependent DEA models for DMUs with interval data is extended. First, we consider each DMU (which has interval data) as two DMUs (which have exact data) and then, by solving some DEA models, we can find intervals for attractiveness degree of those DMUs. Finally, some numerical experiment is used to illustrate the proposed approach at the end of paper.展开更多
To convert invisible, unstructured and time-sensitive machine data into information for decision making is a challenge. Tools available today handle only structured data. All the transaction data are getting captured ...To convert invisible, unstructured and time-sensitive machine data into information for decision making is a challenge. Tools available today handle only structured data. All the transaction data are getting captured without understanding its future relevance and usage. It leads to other big data analytics related issue in storing, archiving, processing, not bringing in relevant business insights to the business user. In this paper, we are proposing a context aware pattern methodology to filter relevant transaction data based on the preference of business.展开更多
针对数据挖掘结果集数量巨大的特点,基于Focus+Context人机交互可视化技术实现结果集的B roadV iew and D etail on D em and导航可以有效帮助对挖掘结果的聚焦与探询,进而帮助用户快速找到所需要的信息。给出了基于规则层次凝聚类与Foc...针对数据挖掘结果集数量巨大的特点,基于Focus+Context人机交互可视化技术实现结果集的B roadV iew and D etail on D em and导航可以有效帮助对挖掘结果的聚焦与探询,进而帮助用户快速找到所需要的信息。给出了基于规则层次凝聚类与Focus+Context技术的可视化系统方法与原形系统,有效地解决了巨量规则的有效浏览与可视化问题,避免了直接对规则元素图形显示效果不佳的问题,从而有利于挖掘的应用。展开更多
基金Supported by the National Key Research and Development Plan(2016YFB1001200)the National Natural Science Foundation of China(U1435220,61232013)
文摘In this paper,an interactive method is proposed to describe computer animation data and accelerate the process of animation generation.First,a semantic model and a resource description framework(RDF)are utilized to analyze and describe the relationships between animation data.Second,a novel context model which is able to keep the context-awareness was proposed to facilitate data organization and storage.In our context model,all the main animation elements in a scene are operated as a whole.Then sketch is utilized as the main interactive method to describe the relationships between animation data,edit the context model and make some other user operations.Finally,a context-aware computer animation data description system based on sketch is generated and it also works well in animation generation process.
文摘Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative efficiency of decision making units (DMUs) on the basis of multiple inputs and outputs. The context-dependent DEA is introduced to measure the relative attractiveness of a particular DMU when compared to others. In real-world situation, because of incomplete or non-obtainable information, the data (Input and Output) are often not so deterministic, therefore they usually are imprecise data such as interval data, hence the DEA models becomes a nonlinear programming problem and is called imprecise DEA (IDEA). In this paper the context-dependent DEA models for DMUs with interval data is extended. First, we consider each DMU (which has interval data) as two DMUs (which have exact data) and then, by solving some DEA models, we can find intervals for attractiveness degree of those DMUs. Finally, some numerical experiment is used to illustrate the proposed approach at the end of paper.
文摘To convert invisible, unstructured and time-sensitive machine data into information for decision making is a challenge. Tools available today handle only structured data. All the transaction data are getting captured without understanding its future relevance and usage. It leads to other big data analytics related issue in storing, archiving, processing, not bringing in relevant business insights to the business user. In this paper, we are proposing a context aware pattern methodology to filter relevant transaction data based on the preference of business.
文摘识别非驾驶行为是提高驾驶安全性的重要手段之一。目前基于骨架序列和图像的融合识别方法具有计算量大和特征融合困难的问题。针对上述问题,本文提出一种基于多尺度骨架图和局部视觉上下文融合的驾驶员行为识别模型(skeleton-image based behavior recognition network,SIBBR-Net)。SIBBR-Net通过基于多尺度图的图卷积网络和基于局部视觉及注意力机制的卷积神经网络,充分提取运动和外观特征,较好地平衡了模型表征能力和计算量间的关系。基于手部运动的特征双向引导学习策略、自适应特征融合模块和静态特征空间上的辅助损失,使运动和外观特征间互相引导更新并实现自适应融合。最终在Drive&Act数据集进行算法测试,SIBBR-Net在动态标签和静态标签条件下的平均正确率分别为61.78%和80.42%,每秒浮点运算次数为25.92G,较最优方法降低了76.96%。
文摘针对数据挖掘结果集数量巨大的特点,基于Focus+Context人机交互可视化技术实现结果集的B roadV iew and D etail on D em and导航可以有效帮助对挖掘结果的聚焦与探询,进而帮助用户快速找到所需要的信息。给出了基于规则层次凝聚类与Focus+Context技术的可视化系统方法与原形系统,有效地解决了巨量规则的有效浏览与可视化问题,避免了直接对规则元素图形显示效果不佳的问题,从而有利于挖掘的应用。