Hydrocarbon reservoir beds have been delineated using direct hydrocarbon indicator on seismic sections as well as well logs data in X field, Onshore Niger Delta. The research methodology involved horizon interpretatio...Hydrocarbon reservoir beds have been delineated using direct hydrocarbon indicator on seismic sections as well as well logs data in X field, Onshore Niger Delta. The research methodology involved horizon interpretation to produce sub-surface structure map. Geophysical well log signatures were employed in identifying hydrocarbon bearing sand. The well-to-seismic tie revealed that the reservoir tied directly with hydrocarbon indicator (bright spot) on the seismic sections. The major structure responsible for the hydrocarbon entrapment is anticline. The crest of the anticline from the depth structural map occurs at 3450 metres.展开更多
A paleo-lacustrine delta in Kyoto, Japan was reconstructed on the basis of subsurface geological and geomorphological analysis, and paleo-lake level changes were estimated from the structure of the delta. These analys...A paleo-lacustrine delta in Kyoto, Japan was reconstructed on the basis of subsurface geological and geomorphological analysis, and paleo-lake level changes were estimated from the structure of the delta. These analyses of the study region, i.e., the Oguraike reclaimed land area provided evidence that Lake Ogura existed until about 60 years ago in southern Kyoto, Japan. The Uji river delta was provided influents to this lake until ca. 400 years ago, as is indicated by an upward-coarsening delta succession of about 2 - 4 m thickness. The lake level could also have changed in the past as a result of a change in altitude of the delta-front (foreset) and delta-plain boundary, which probably reflects the lake surface elevation. About 400 years ago, the Paleo-Uji River was separated from Ogura Lake because a levee was constructed along the river for building a castle and for constructing a waterway for transportation. As a result of this construction, the lake level that was more than 13.0 m in elevation was reduced by 1.5 m. In a more ancient times, the lake level experienced two stages—one in which the elevation was more than 13.5 m, and one in which the elevation was reduced to less than 10 m. These changes in the lake level are represented by a flat surface with four steps and small cliff of height ca. 0.5 - 2 m (relative elevation) separating them, recognized at the southern lakeshore. The observation of strata along with the archaeological survey in the north of Ogura Lake reveals that the lake level was decreased ca. 800 - 680 years ago. The lake level was at its highest during two periods, the first from before the 8th century to the end of the 8th century and the second from the 14th century to 400 years ago.展开更多
文摘Hydrocarbon reservoir beds have been delineated using direct hydrocarbon indicator on seismic sections as well as well logs data in X field, Onshore Niger Delta. The research methodology involved horizon interpretation to produce sub-surface structure map. Geophysical well log signatures were employed in identifying hydrocarbon bearing sand. The well-to-seismic tie revealed that the reservoir tied directly with hydrocarbon indicator (bright spot) on the seismic sections. The major structure responsible for the hydrocarbon entrapment is anticline. The crest of the anticline from the depth structural map occurs at 3450 metres.
文摘A paleo-lacustrine delta in Kyoto, Japan was reconstructed on the basis of subsurface geological and geomorphological analysis, and paleo-lake level changes were estimated from the structure of the delta. These analyses of the study region, i.e., the Oguraike reclaimed land area provided evidence that Lake Ogura existed until about 60 years ago in southern Kyoto, Japan. The Uji river delta was provided influents to this lake until ca. 400 years ago, as is indicated by an upward-coarsening delta succession of about 2 - 4 m thickness. The lake level could also have changed in the past as a result of a change in altitude of the delta-front (foreset) and delta-plain boundary, which probably reflects the lake surface elevation. About 400 years ago, the Paleo-Uji River was separated from Ogura Lake because a levee was constructed along the river for building a castle and for constructing a waterway for transportation. As a result of this construction, the lake level that was more than 13.0 m in elevation was reduced by 1.5 m. In a more ancient times, the lake level experienced two stages—one in which the elevation was more than 13.5 m, and one in which the elevation was reduced to less than 10 m. These changes in the lake level are represented by a flat surface with four steps and small cliff of height ca. 0.5 - 2 m (relative elevation) separating them, recognized at the southern lakeshore. The observation of strata along with the archaeological survey in the north of Ogura Lake reveals that the lake level was decreased ca. 800 - 680 years ago. The lake level was at its highest during two periods, the first from before the 8th century to the end of the 8th century and the second from the 14th century to 400 years ago.