A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the ...A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.展开更多
The research work has been seldom done about cloverleaf junction expression in a 3-dimensional city model (3DCM). The main reason is that the cloverleaf junction is often in a complex and enormous construction. Its ma...The research work has been seldom done about cloverleaf junction expression in a 3-dimensional city model (3DCM). The main reason is that the cloverleaf junction is often in a complex and enormous construction. Its main body is bestraddle in air,and has aerial intersections between its parts. This complex feature made cloverleaf junction quite different from buildings and terrain, therefore, it is difficult to express this kind of spatial objects in the same way as for buildings and terrain. In this paper,authors analyze spatial characteristics of cloverleaf junction, propose an all-constraint points TIN algorithm to partition cloverleaf junction road surface, and develop a method to visualize cloverleaf junction road surface using TIN. In order to manage cloverleaf junction data efficiently, the authors also analyzed the mechanism of 3DCM data management, extended BLOB type in relational database, and combined R-tree index to manage 3D spatial data. Based on this extension, an appropriate data展开更多
The key to develop 3-D GISs is the study on 3-D data model and data structure. Some of the data models and data structures have been presented by scholars. Because of the complexity of 3-D spatial phenomenon, there ar...The key to develop 3-D GISs is the study on 3-D data model and data structure. Some of the data models and data structures have been presented by scholars. Because of the complexity of 3-D spatial phenomenon, there are no perfect data structures that can describe all spatial entities. Every data structure has its own advantages and disadvantages. It is difficult to design a single data structure to meet different needs. The important subject in the3-D data models is developing a data model that has integrated vector and raster data structures. A special 3-D spatial data model based on distributing features of spatial entities should be designed. We took the geological exploration engineering as the research background and designed an integrated data model whose data structures integrats vector and raster data byadopting object-oriented technique. Research achievements are presented in this paper.展开更多
This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assim...This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.展开更多
To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mo...To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.展开更多
This paper studies the re-adjusted cross-validation method and a semiparametric regression model called the varying index coefficient model. We use the profile spline modal estimator method to estimate the coefficient...This paper studies the re-adjusted cross-validation method and a semiparametric regression model called the varying index coefficient model. We use the profile spline modal estimator method to estimate the coefficients of the parameter part of the Varying Index Coefficient Model (VICM), while the unknown function part uses the B-spline to expand. Moreover, we combine the above two estimation methods under the assumption of high-dimensional data. The results of data simulation and empirical analysis show that for the varying index coefficient model, the re-adjusted cross-validation method is better in terms of accuracy and stability than traditional methods based on ordinary least squares.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41490644,41475101 and 41421005)the CAS Strategic Priority Project(the Western Pacific Ocean System+2 种基金Project Nos.XDA11010105,XDA11020306 and XDA11010301)the NSFC-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)the NSFC Innovative Group Grant(Project No.41421005)
文摘A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.
文摘The research work has been seldom done about cloverleaf junction expression in a 3-dimensional city model (3DCM). The main reason is that the cloverleaf junction is often in a complex and enormous construction. Its main body is bestraddle in air,and has aerial intersections between its parts. This complex feature made cloverleaf junction quite different from buildings and terrain, therefore, it is difficult to express this kind of spatial objects in the same way as for buildings and terrain. In this paper,authors analyze spatial characteristics of cloverleaf junction, propose an all-constraint points TIN algorithm to partition cloverleaf junction road surface, and develop a method to visualize cloverleaf junction road surface using TIN. In order to manage cloverleaf junction data efficiently, the authors also analyzed the mechanism of 3DCM data management, extended BLOB type in relational database, and combined R-tree index to manage 3D spatial data. Based on this extension, an appropriate data
基金Project supported by the National Outstanding Youth Researchers Foundation (No.49525101)the Opening Research Foundation from LIESMARS(WKL(96)0302)
文摘The key to develop 3-D GISs is the study on 3-D data model and data structure. Some of the data models and data structures have been presented by scholars. Because of the complexity of 3-D spatial phenomenon, there are no perfect data structures that can describe all spatial entities. Every data structure has its own advantages and disadvantages. It is difficult to design a single data structure to meet different needs. The important subject in the3-D data models is developing a data model that has integrated vector and raster data structures. A special 3-D spatial data model based on distributing features of spatial entities should be designed. We took the geological exploration engineering as the research background and designed an integrated data model whose data structures integrats vector and raster data byadopting object-oriented technique. Research achievements are presented in this paper.
基金sponsored by the U.S. National Science Foundation (Grant No.ATM0205599)the U.S. Offce of Navy Research under Grant N000140410471Dr. James A. Hansen was partially supported by US Offce of Naval Research (Grant No. N00014-06-1-0500)
文摘This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.
基金supported by the National Natural Science Foundation of China (Grant No. 50539010, 50539110, 50579010, 50539030 and 50809025)
文摘To improve the effectiveness of dam safety monitoring database systems, the development process of a multi-dimensional conceptual data model was analyzed and a logic design wasachieved in multi-dimensional database mode. The optimal data model was confirmed by identifying data objects, defining relations and reviewing entities. The conversion of relations among entities to external keys and entities and physical attributes to tables and fields was interpreted completely. On this basis, a multi-dimensional database that reflects the management and analysis of a dam safety monitoring system on monitoring data information has been established, for which factual tables and dimensional tables have been designed. Finally, based on service design and user interface design, the dam safety monitoring system has been developed with Delphi as the development tool. This development project shows that the multi-dimensional database can simplify the development process and minimize hidden dangers in the database structure design. It is superior to other dam safety monitoring system development models and can provide a new research direction for system developers.
文摘This paper studies the re-adjusted cross-validation method and a semiparametric regression model called the varying index coefficient model. We use the profile spline modal estimator method to estimate the coefficients of the parameter part of the Varying Index Coefficient Model (VICM), while the unknown function part uses the B-spline to expand. Moreover, we combine the above two estimation methods under the assumption of high-dimensional data. The results of data simulation and empirical analysis show that for the varying index coefficient model, the re-adjusted cross-validation method is better in terms of accuracy and stability than traditional methods based on ordinary least squares.