期刊文献+
共找到906篇文章
< 1 2 46 >
每页显示 20 50 100
Data-Driven Model Identification and Control of the Inertial Systems
1
作者 Irina Cojuhari 《Intelligent Control and Automation》 2023年第1期1-18,共18页
In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the sy... In the synthesis of the control algorithm for complex systems, we are often faced with imprecise or unknown mathematical models of the dynamical systems, or even with problems in finding a mathematical model of the system in the open loop. To tackle these difficulties, an approach of data-driven model identification and control algorithm design based on the maximum stability degree criterion is proposed in this paper. The data-driven model identification procedure supposes the finding of the mathematical model of the system based on the undamped transient response of the closed-loop system. The system is approximated with the inertial model, where the coefficients are calculated based on the values of the critical transfer coefficient, oscillation amplitude and period of the underdamped response of the closed-loop system. The data driven control design supposes that the tuning parameters of the controller are calculated based on the parameters obtained from the previous step of system identification and there are presented the expressions for the calculation of the tuning parameters. The obtained results of data-driven model identification and algorithm for synthesis the controller were verified by computer simulation. 展开更多
关键词 data-driven model Identification Controller Tuning Undamped Transient Response Closed-Loop System Identification PID Controller
下载PDF
Data driven models for compressive strength prediction of concrete at high temperatures 被引量:1
2
作者 Mahmood AKBARI Vahid JAFARI DELIGANI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第2期311-321,共11页
The use of data driven models has been shown to be useful for simulating complex engineering processes,when the only information available consists of the data of the process.In this study,four data-driven models,name... The use of data driven models has been shown to be useful for simulating complex engineering processes,when the only information available consists of the data of the process.In this study,four data-driven models,namely multiple linear regression,artificial neural network,adaptive neural fuzzy inference system,and K nearest neighbor models based on collection of 207 laboratory tests,are investigated for compressive strength prediction of concrete at high temperature.In addition for each model,two different sets of input variables are examined:a complete set and a parsimonious set of involved variables.The results obtained are compared with each other and also to the equations of NIST Technical Note standard and demonstrate the suitability of using the data driven models to predict the compressive strength at high temperature.In addition,the results show employing the parsimonious set of input variables is sufficient for the data driven models to make satisfactory results. 展开更多
关键词 data driven model compressive strength oncrete high temperature
原文传递
Full field reservoir modeling of shale assets using advanced data-driven analytics 被引量:9
3
作者 Soodabeh Esmaili Shahab D.Mohaghegh 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第1期11-20,共10页
Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorpt... Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism(sorption process and flow behavior in complex fracture systems- induced or natural) leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called "hard data" directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The "hard data" refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of "soft data"(non-measured, interpretive data such as frac length, width,height and conductivity) in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset. 展开更多
关键词 Reservoir modeling data driven reservoir modeling Top-down modeling Shale reservoir modelING SHALE
下载PDF
Product Data Model for Performance-driven Design
4
作者 Guang-Zhong Hu Xin-Jian Xu +2 位作者 Shou-Ne Xiao Guang-Wu Yang Fan Pu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1112-1122,共11页
When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency... When designing large-sized complex machinery products, the design focus is always on the overall per- formance; however, there exist no design theory and method based on performance driven. In view of the defi- ciency of the existing design theory, according to the performance features of complex mechanical products, the performance indices are introduced into the traditional design theory of "Requirement-Function-Structure" to construct a new five-domain design theory of "Client Requirement-Function-Performance-Structure-Design Parameter". To support design practice based on this new theory, a product data model is established by using per- formance indices and the mapping relationship between them and the other four domains. When the product data model is applied to high-speed train design and combining the existing research result and relevant standards, the corresponding data model and its structure involving five domains of high-speed trains are established, which can provide technical support for studying the relationships between typical performance indices and design parame- ters and the fast achievement of a high-speed train scheme design. The five domains provide a reference for the design specification and evaluation criteria of high speed train and a new idea for the train's parameter design. 展开更多
关键词 Complex product design Performance driven data model Mapping relationship High-speed train
下载PDF
A Data-Driven Simulation Model for China Haze Monitor and Governance
5
作者 Xiaoyan Lu Hong Chen +1 位作者 Miao Wang Zhengying Cai 《World Journal of Engineering and Technology》 2016年第2期374-381,共8页
Recently, the China haze becomes more and more serious, but it is very difficult to model and control it. Here, a data-driven model is introduced for the simulation and monitoring of China haze. First, a multi-dimensi... Recently, the China haze becomes more and more serious, but it is very difficult to model and control it. Here, a data-driven model is introduced for the simulation and monitoring of China haze. First, a multi-dimensional evaluation system is built to evaluate the government performance of China haze. Second, a data-driven model is employed to reveal the operation mechanism of China’s haze and is described as a multi input and multi output system. Third, a prototype system is set up to verify the proposed scheme, and the result provides us with a graphical tool to monitor different haze control strategies. 展开更多
关键词 data-driven Haze Monitor MIMO Simulation model
下载PDF
A Data-Driven Car-Following Model Based on the Random Forest
6
作者 Huili Shi Tingli Wang +3 位作者 Fusheng Zhong Hanqing Wang Junyan Han Xiaoyuan Wang 《World Journal of Engineering and Technology》 2021年第3期503-515,共13页
The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare... The car-following models are the research basis of traffic flow theory and microscopic traffic simulation. Among the previous work, the theory-driven models are dominant, while the data-driven ones are relatively rare. In recent years, the related technologies of Intelligent Transportation System (ITS) re</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">presented by the Vehicles to Everything (V2X) technology have been developing rapidly. Utilizing the related technologies of ITS, the large-scale vehicle microscopic trajectory data with high quality can be acquired, which provides the research foundation for modeling the car-following behavior based on the data-driven methods. According to this point, a data-driven car-following model based on the Random Forest (RF) method was constructed in this work, and the Next Generation Simulation (NGSIM) dataset was used to calibrate and train the constructed model. The Artificial Neural Network (ANN) model, GM model, and Full Velocity Difference (FVD) model are em</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">ployed to comparatively verify the proposed model. The research results suggest that the model proposed in this work can accurately describe the car-</span><span style="font-family:Verdana;"> </span><span style="font-family:Verdana;">following behavior with better performance under multiple performance indicators. 展开更多
关键词 Traffic Flow Car-Following model data-driven Method Random Forest Intelligent Transportation System
下载PDF
Data and Model Driven Task Offloading Strategy in the Dynamic Mobile Edge Computing System
7
作者 DONG Hairong WU Wei +2 位作者 SONG Haifeng LIU Zhen ZHANG Zixuan 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第1期351-368,共18页
Mobile Edge Computing(MEC)provides communication and computational capabilities for the industrial Internet,meeting the demands of latency-sensitive tasks.Nevertheless,traditional model-driven task offloading strategi... Mobile Edge Computing(MEC)provides communication and computational capabilities for the industrial Internet,meeting the demands of latency-sensitive tasks.Nevertheless,traditional model-driven task offloading strategies face challenges in adapting to situations with unknown network communication status and computational capabilities.This limitation becomes notably significant in complex industrial networks of high-speed railway.Motivated by these considerations,a data and model-driven task offloading problem is proposed in this paper.A redundant communication network is designed to adapt to anomalous channel states when tasks are offloaded to edge servers.The link switching mechanism is executed by the train according to the attributes of the completed task.The task offloading optimization problem is formulated by introducing data-driven prediction of communication states into the traditional model.Furthermore,the optimal strategy is achieved by employing the informer-based prediction algorithm and the quantum particle swarm optimization method,which effectively tackle real-time optimization problems due to their low time complexity.The simulations illustrate that the data and model-driven task offloading strategy can predict the communication state in advance,thus reducing the cost of the system and improving its robustness. 展开更多
关键词 data driven model INFORMER mobile edge computing quantum particle swarm optimization task offloading.
原文传递
Performance Monitoring of the Data-driven Subspace Predictive Control Systems Based on Historical Objective Function Benchmark 被引量:3
8
作者 王陆 李柠 李少远 《自动化学报》 EI CSCD 北大核心 2013年第5期542-547,共6页
关键词 预测控制系统 性能监控 数据驱动 子空间 历史 基准 监视控制器 目标函数
下载PDF
Data-driven computing in elasticity via kernel regression 被引量:2
9
作者 Yoshihiro Kanno 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第6期361-365,I0003,共6页
This paper presents a simple nonparametric regression approach to data-driven computing in elasticity. We apply the kernel regression to the material data set, and formulate a system of nonlinear equations solved to o... This paper presents a simple nonparametric regression approach to data-driven computing in elasticity. We apply the kernel regression to the material data set, and formulate a system of nonlinear equations solved to obtain a static equilibrium state of an elastic structure. Preliminary numerical experiments illustrate that, compared with existing methods, the proposed method finds a reasonable solution even if data points distribute coarsely in a given material data set. 展开更多
关键词 data-driven computational mechanics model-free method Nonparametric method Kernel regression Nadaraya–Watson estimator
下载PDF
DATA DRIVEN控制方式图象理解系统的结构性能及改进
10
作者 李力 《北方工业大学学报》 1989年第3期78-82,共5页
本文是以图象理解系统实例分析入手,较详尽地论述了采用DATADRIVEN控制方式的线画解释图象理解系统的硬软件结构,并在评估了系统的可靠性基础上,提出了采用数据驱动和模型驱动双向控制的新观点.
关键词 图象理解 双向控制 结画解释
下载PDF
Data driven composite shape descriptor design for shape retrieval with a VoR-Tree
11
作者 WANG Zi-hao LIN Hong-wei XU Chen-kai 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2018年第1期88-106,共19页
We develop a data driven method(probability model) to construct a composite shape descriptor by combining a pair of scale-based shape descriptors. The selection of a pair of scale-based shape descriptors is modeled as... We develop a data driven method(probability model) to construct a composite shape descriptor by combining a pair of scale-based shape descriptors. The selection of a pair of scale-based shape descriptors is modeled as the computation of the union of two events, i.e.,retrieving similar shapes by using a single scale-based shape descriptor. The pair of scale-based shape descriptors with the highest probability forms the composite shape descriptor. Given a shape database, the composite shape descriptors for the shapes constitute a planar point set.A VoR-Tree of the planar point set is then used as an indexing structure for efficient query operation. Experiments and comparisons show the effectiveness and efficiency of the proposed composite shape descriptor. 展开更多
关键词 shape descriptor shape retrieval shape analysis data-driven model
下载PDF
Performance of a data-driven technique applied to changes in wave height and its effect on beach response 被引量:1
12
作者 José M.Horrillo-Caraballo Harshinie Karunarathna +1 位作者 Shun-qi Pan Dominic Reeve 《Water Science and Engineering》 EI CAS CSCD 2016年第1期42-51,共10页
In this study the medium-term response of beach profiles was investigated at two sites: a gently sloping sandy beach and a steeper mixed sand and gravel beach. The former is the Duck site in North Carolina, on the ea... In this study the medium-term response of beach profiles was investigated at two sites: a gently sloping sandy beach and a steeper mixed sand and gravel beach. The former is the Duck site in North Carolina, on the east coast of the USA, which is exposed to Atlantic Ocean swells and storm waves, and the latter is the Milford-on-Sea site at Christchurch Bay, on the south coast of England, which is partially sheltered from Atlantic swells but has a directionally bimodal wave exposure. The data sets comprise detailed bathymetric surveys of beach profiles covering a period of more than 25 years for the Duck site and over 18 years for the Milford-on-Sea site. The structure of the data sets and the data-driven methods are described. Canonical correlation analysis (CCA) was used to find linkages between the wave characteristics and beach profiles. The sensitivity of the linkages was investigated by deploying a wave height threshold to filter out the smaller waves incrementally. The results of the analysis indicate that, for the gently sloping sandy beach, waves of all heights are important to the morphological response. For the mixed sand and gravel beach, filtering the smaller waves improves the statistical fit and it suggests that low-height waves do not play a primary role in the medium-term morohological resoonse, which is primarily driven by the intermittent larger storm waves. 展开更多
关键词 Beach profile Canonical correlation analysis data-driven technique Empirical orthogonal function FORECAST Statistical model Wave height threshold
下载PDF
干散货码头数字孪生综合管控平台架构与实践 被引量:2
13
作者 李林 张钊 +1 位作者 范垂荣 鲁东起 《水运工程》 2024年第1期189-195,共7页
为加快干散货智慧港口建设,探讨了数字孪生技术在干散货码头中的应用。分析干散货码头运营呈现出的自动化、信息化、智能化发展趋势,指出当前面临的数据爆炸性增长、数据采集不全面等挑战。在此基础上,对数字孪生在港口的应用领域进行... 为加快干散货智慧港口建设,探讨了数字孪生技术在干散货码头中的应用。分析干散货码头运营呈现出的自动化、信息化、智能化发展趋势,指出当前面临的数据爆炸性增长、数据采集不全面等挑战。在此基础上,对数字孪生在港口的应用领域进行分析梳理,围绕数字孪生模型内容,提出7大应用业务领域。通过干散货码头数字孪生的建设路线,提出以数据驱动和模型驱动为核心的数字孪生模型构建方法。结合干散货码头智能化建设现状,提出干散货码头数字孪生平台架构方案。选取典型门机设备和港区全局典型案例,分别从微观设备孪生构建和宏观全局孪生场景两个层面阐述应用实践经验,以期为智慧港口的发展与建设提供参考。 展开更多
关键词 智慧港口 干散货码头 数字孪生 数据驱动 模型驱动
下载PDF
锂离子电池健康状态估计及寿命预测研究进展综述 被引量:10
14
作者 熊庆 邸振国 汲胜昌 《高电压技术》 EI CAS CSCD 北大核心 2024年第3期1182-1195,共14页
随着锂离子电池的应用越来越广泛,锂电池健康状态的精确估计和剩余寿命的实时预测对于锂电池系统的安全运行和降低运维成本具有重要意义。锂电池内部复杂的物理化学反应和外部复杂工作条件,使得实现精准的健康状态估计和寿命预测具有挑... 随着锂离子电池的应用越来越广泛,锂电池健康状态的精确估计和剩余寿命的实时预测对于锂电池系统的安全运行和降低运维成本具有重要意义。锂电池内部复杂的物理化学反应和外部复杂工作条件,使得实现精准的健康状态估计和寿命预测具有挑战性。该文综述近年来锂电池健康状态估计和剩余使用寿命预测方法的研究现状,分析基于物理/数学模型、数据驱动、模型法和数据驱动融合,以及多种数据驱动融合的锂电池健康状态估计方法的优缺点及适用条件,并对比分析不同数据驱动类型的锂电池寿命预测方法。指出锂电池健康状态估计及寿命预测尚存在的问题,并对未来研究方向进行展望,对完善锂电池健康状态估计和寿命预测算法理论体系、指导实际应用技术具有重要意义。 展开更多
关键词 锂离子电池 状态估计 寿命预测 电化学模型 数据驱动技术
下载PDF
小样本学习技术在新型电力系统中的应用与挑战 被引量:1
15
作者 贺兴 潘美琪 艾芊 《电力系统自动化》 EI CSCD 北大核心 2024年第6期74-82,共9页
数据驱动已成为新型电力系统建设及其数字化转型的核心范式,相关算法在负荷预测、状态检修、多主体调控等多项业务中展现出优越的工程效果与应用潜力。然而,实际工程数据往往面临着样本不足、样本不平衡等问题,制约了数据驱动算法的最... 数据驱动已成为新型电力系统建设及其数字化转型的核心范式,相关算法在负荷预测、状态检修、多主体调控等多项业务中展现出优越的工程效果与应用潜力。然而,实际工程数据往往面临着样本不足、样本不平衡等问题,制约了数据驱动算法的最终效果。因此,需要借助小样本学习来应对这一挑战。文中从数据、特征、模型3个层面探究了小样本学习技术,综述并分析了相关技术在场景生成、故障诊断、电力系统暂态稳定评估等业务的应用现状,并进一步指出小样本学习技术在新型电力系统中所面临的不足与挑战。 展开更多
关键词 小样本学习 数据驱动 生成模型 迁移学习
下载PDF
集成学习框架下的车辆跟驰行为建模
16
作者 李立 李仕琪 +2 位作者 徐志刚 李光泽 汪贵平 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第3期46-55,共10页
为了提高复杂行驶环境下车辆跟驰行为预测精度,提出了一种集成学习框架下融合理论驱动模型和数据驱动模型的车辆跟驰行为建模方法。基于stacking集成学习框架,选择理论驱动的智能驾驶模型(IDM)、考虑车辆队列和周围行驶条件因素的数据... 为了提高复杂行驶环境下车辆跟驰行为预测精度,提出了一种集成学习框架下融合理论驱动模型和数据驱动模型的车辆跟驰行为建模方法。基于stacking集成学习框架,选择理论驱动的智能驾驶模型(IDM)、考虑车辆队列和周围行驶条件因素的数据驱动的长短时记忆(LSTM)网络和门控循环单元(GRU)网络作为跟驰行为特征的一级学习算法,选择3种线性和8种非线性回归方法作为备选二级学习算法来融合一级学习器的输出特征。通过对比使用实际车辆轨迹数据计算的模型预测精度,确定了最优模型。研究结果表明:包含车辆队列和周围行驶条件变量的数据驱动跟驰模型比IDM模型的预测精度更高;多数情况下采用非线性二级学习算法的融合跟驰模型的预测精度高于IDM模型、数据驱动跟驰模型以及采用线性二级学习算法的融合跟驰模型;分别采用GBRT回归和随机森林回归作为二级学习算法的IDM-LSTM-stacking模型和IDM-GRU-stacking模型具有最高的预测精度;外界干扰下的融合跟驰模型稳定性优于单一的理论和数据驱动跟驰模型。集成学习为驾驶行为建模提供了新方法。 展开更多
关键词 交通工程 跟驰模型 集成学习 理论驱动模型 数据驱动模型
下载PDF
基于多域物理信息神经网络的复合地层隧道掘进地表沉降预测 被引量:2
17
作者 潘秋景 吴洪涛 +1 位作者 张子龙 宋克志 《岩土力学》 EI CAS CSCD 北大核心 2024年第2期539-551,共13页
复合地层中盾构掘进诱发地表沉降的准确预测是隧道工程安全建设与施工决策的关键问题。基于隧道施工诱发地层变形机制构建隧道收敛变形与掘进位置的联系,并将其耦合至深度神经网络(deep neural network,简称DNN)框架,建立了预测盾构掘... 复合地层中盾构掘进诱发地表沉降的准确预测是隧道工程安全建设与施工决策的关键问题。基于隧道施工诱发地层变形机制构建隧道收敛变形与掘进位置的联系,并将其耦合至深度神经网络(deep neural network,简称DNN)框架,建立了预测盾构掘进诱发地层变形的物理信息神经网络(physics-informed neural network,简称PINN)模型。针对隧道上覆多个地层的地质特征,提出了多域物理信息神经网络(multi-physics-informed neural network,简称MPINN)模型,实现了在统一的框架内对不同地层的物理信息分区域表达。结果表明:MPINN模型高度还原了有限差分法的计算结果,可以准确预测复合地层中隧道开挖诱发的地表沉降;由于融入了物理机制,MPINN模型对隧道施工诱发地表沉降的问题具有普适性,可应用于不同地质和几何条件下隧道诱发地表沉降的预测;基于工程实测数据,提出的MPINN模型准确预测了监测断面的地表沉降曲线,可为复合地层下盾构掘进过程中地表沉降的预测预警提供参考。 展开更多
关键词 物理信息神经网络(PINN) 盾构隧道 地表沉降 机器学习 数据物理驱动
下载PDF
A Data-Driven Adaptive Method for Attitude Control of Fixed-Wing Unmanned Aerial Vehicles 被引量:1
18
作者 Meili Chen Yuan Wang 《Advances in Aerospace Science and Technology》 2019年第1期1-15,共15页
In this paper, a real-time online data-driven adaptive method is developed to deal with uncertainties such as high nonlinearity, strong coupling, parameter perturbation and external disturbances in attitude control of... In this paper, a real-time online data-driven adaptive method is developed to deal with uncertainties such as high nonlinearity, strong coupling, parameter perturbation and external disturbances in attitude control of fixed-wing unmanned aerial vehicles (UAVs). Firstly, a model-free adaptive control (MFAC) method requiring only input/output (I/O) data and no model information is adopted for control scheme design of angular velocity subsystem which contains all model information and up-mentioned uncertainties. Secondly, the internal model control (IMC) method featured with less tuning parameters and convenient tuning process is adopted for control scheme design of the certain Euler angle subsystem. Simulation results show that, the method developed is obviously superior to the cascade PID (CPID) method and the nonlinear dynamic inversion (NDI) method. 展开更多
关键词 data-driven Adaptive Method ATTITUDE CONTROL Unmanned AERIAL Vehicles (UAV) Internal model CONTROL
下载PDF
考虑灵活资源及模数驱动方法的电力系统调度方法综述 被引量:2
19
作者 张大海 孙锴 +3 位作者 史一茹 李立新 李亚平 贠韫韵 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期42-54,共13页
可再生能源及负荷种类的增多给电力系统运行带来更大不确定性,也给电力系统经济调度带来挑战。深入分析总结灵活资源特性并对不确定性的准确建模是评估电力系统灵活性和实现经济调度的基础。基于模型或数据驱动的调度建模方法面临诸多挑... 可再生能源及负荷种类的增多给电力系统运行带来更大不确定性,也给电力系统经济调度带来挑战。深入分析总结灵活资源特性并对不确定性的准确建模是评估电力系统灵活性和实现经济调度的基础。基于模型或数据驱动的调度建模方法面临诸多挑战,将模型与数据驱动方式相结合,并充分发挥二者优势是电力系统优化调度的发展方向。该文从灵活资源分类及特性、系统灵活性评估方法及优化调度的模型与数据驱动建模3个方面进行了归纳整理。首先,从电网侧、供应侧及需求侧3个方面介绍了系统中的灵活资源,并总结了其调节特性。其次,介绍了权重分配、数理统计及包络区间3种常用电力系统灵活性评价指标,并总结了不同方法的适用性。然后,总结了模型驱动或数据驱动的应用现状及其各自优缺点,并对模型数据交互驱动的研究现状进行了概述。最后,对考虑灵活资源的电力系统调度方案研究进行了展望。 展开更多
关键词 灵活资源 评价指标 模型驱动 数据驱动 优化调度
下载PDF
大数据驱动下的国家矿产资源管理:赋能机理与模式创新
20
作者 彭忠益 宋羽婷 +1 位作者 刘芳 高峰 《中南大学学报(社会科学版)》 北大核心 2024年第5期151-159,共9页
传统矿产资源管理模式面临着国内国际复杂形势和资源安全上升国家战略地位的双重压力。大数据作为信息时代的基础资源,为国家治理现代化提供了技术支撑。探讨大数据驱动下国家矿产资源管理新模式不仅是解决当下管理困境的应有之义,更是... 传统矿产资源管理模式面临着国内国际复杂形势和资源安全上升国家战略地位的双重压力。大数据作为信息时代的基础资源,为国家治理现代化提供了技术支撑。探讨大数据驱动下国家矿产资源管理新模式不仅是解决当下管理困境的应有之义,更是在新时代全球资源竞合中占据优势的主动之举。基于“需求锚定—结构赋能—平台接榫”三维分析框架,界定目前我国矿产资源管理中存在的职能、体制、决策、监管四个维度的现实问题;在此基础上,针对性地分析大数据技术从虚拟治理空间、多源数据聚合、数据情报智慧、全程动态留痕四个维度赋能国家矿产资源管理的机理;围绕大数据平台支撑下的职责分配明确、体制层级交错、智能情报决策和动态全景监管四个功能,提出构建国家矿产资源管理新模式的实现路径。 展开更多
关键词 矿产资源管理 大数据 管理模式 数据驱动
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部