In the nonparametric data envelopment analysis literature,scale elasticity is evaluated in two alternative ways:using either the technical efficiency model or the cost efficiency model.This evaluation becomes problema...In the nonparametric data envelopment analysis literature,scale elasticity is evaluated in two alternative ways:using either the technical efficiency model or the cost efficiency model.This evaluation becomes problematic in several situations,for example(a)when input proportions change in the long run,(b)when inputs are heterogeneous,and(c)when firms face ex-ante price uncertainty in making their production decisions.To address these situations,a scale elasticity evaluation was performed using a value-based cost efficiency model.However,this alternative value-based scale elasticity evaluation is sensitive to the uncertainty and variability underlying input and output data.Therefore,in this study,we introduce a stochastic cost-efficiency model based on chance-constrained programming to develop a value-based measure of the scale elasticity of firms facing data uncertainty.An illustrative empirical application to the Indian banking industry comprising 71 banks for eight years(1998–2005)was made to compare inferences about their efficiency and scale properties.The key findings are as follows:First,both the deterministic model and our proposed stochastic model yield distinctly different results concerning the efficiency and scale elasticity scores at various tolerance levels of chance constraints.However,both models yield the same results at a tolerance level of 0.5,implying that the deterministic model is a special case of the stochastic model in that it reveals the same efficiency and returns to scale characterizations of banks.Second,the stochastic model generates higher efficiency scores for inefficient banks than its deterministic counterpart.Third,public banks exhibit higher efficiency than private and foreign banks.Finally,public and old private banks mostly exhibit either decreasing or constant returns to scale,whereas foreign and new private banks experience either increasing or decreasing returns to scale.Although the application of our proposed stochastic model is illustrative,it can be potentially applied to all firms in the information and distribution-intensive industry with high fixed costs,which have ample potential for reaping scale and scope benefits.展开更多
“双碳”目标下,各类可再生能源发电技术发展迅速,综合权衡不同可再生能源发电方案的综合效益对可再生能源的优化设计具有重要意义。综合考虑经济效益、环境效益、能源效益和社会效益4个层面,提出了一种基于模糊决策试验和评价实验(deci...“双碳”目标下,各类可再生能源发电技术发展迅速,综合权衡不同可再生能源发电方案的综合效益对可再生能源的优化设计具有重要意义。综合考虑经济效益、环境效益、能源效益和社会效益4个层面,提出了一种基于模糊决策试验和评价实验(decision making trial and evaluation laboratory,DEMATEL)与超效率数据包络分析(data envelopment analysis,DEA)模型的可再生能源发电技术综合效益评估方法。该方法分为投入-产出指标体系构建和综合评估2个阶段。首先,利用三角直觉模糊数处理模糊评价信息,将其与DEMATEL相结合量化各指标之间相互影响关系,基于指标间逻辑分析结果建立投入-产出评估指标体系。然后,基于超效率DEA模型对各可再生能源发电方案进行评估排序,结合投入冗余和产出不足分析结果给出各方案的针对性改善建议,以期为进一步选择和确定可再生能源产业发展战略提供参考。最后以某省10类可再生能源发电单元为研究对象,基于所提研究方法进行综合评估和分析,并与多准则妥协解排序法和熵权法进行对比分析,验证了所提方法的有效性。展开更多
In recent years improper allocation of safety input has prevailed in coal mines in China, which resulted in the frequent accidents in coal mining operation. A comprehensive assessment of the input efficiency of coal m...In recent years improper allocation of safety input has prevailed in coal mines in China, which resulted in the frequent accidents in coal mining operation. A comprehensive assessment of the input efficiency of coal mine safety should lead to improved efficiency in the use of funds and management resources. This helps government and enterprise managers better understand how safety inputs are used and to optimize allocation of resources. Study on coal mine's efficiency assessment of safety input was con- ducted in this paper. A C^2R model with non-Archimedean infinitesimal vector based on output is established after consideration of the input characteristics and the model properties. An assessment of an operating mine was done using a specific set of input and output criteria. It is found that the safety input was efficient in 2002 and 2005 and was weakly efficient in 2003. However, the efficiency was relatively low in both 2001 and 2004. The safety input resources can be optimized and adjusted by means of projection theory. Such analysis shows that, on average in 2001 and 2004, 45% of the expended funds could have been saved. Likewise, 10% of the safety management and technical staff could have been eliminated and working hours devoted to safety could have been reduced by 12%. These conditions could have Riven the same results.展开更多
Objective To evaluate the environmental and technical efficiencies of China's industrial sectors and provide appropriate advice for policy makers in the context of rapid economic growth and concurrent serious environ...Objective To evaluate the environmental and technical efficiencies of China's industrial sectors and provide appropriate advice for policy makers in the context of rapid economic growth and concurrent serious environmental damages caused by industrial pollutants. Methods A data of envelopment analysis (DEA) framework crediting both reduction of pollution outputs and expansion of good outputs was designed as a model to compute environmental efficiency of China's regional industrial systems. Results As shown by the geometric mean of environmental efficiency, if other inputs were made constant and good outputs were not to be improved, the air pollution outputs would have the potential to be decreased by about 60% in the whole China. Conclusion Both environmental and technical efficiencies have the potential to be greatly improved in China, which may provide some advice for policy-makers.展开更多
The application of data envelopment analysis (DEA) as a multiple criteria decision making (MCDM) technique has been gaining more and more attention in recent research. In the practice of applying DEA approach, the...The application of data envelopment analysis (DEA) as a multiple criteria decision making (MCDM) technique has been gaining more and more attention in recent research. In the practice of applying DEA approach, the appearance of uncertainties on input and output data of decision making unit (DMU) might make the nominal solution infeasible and lead to the efficiency scores meaningless from practical view. This paper analyzes the impact of data uncertainty on the evaluation results of DEA, and proposes several robust DEA models based on the adaptation of recently developed robust optimization approaches, which would be immune against input and output data uncertainties. The robust DEA models developed are based on input-oriented and outputoriented CCR model, respectively, when the uncertainties appear in output data and input data separately. Furthermore, the robust DEA models could deal with random symmetric uncertainty and unknown-but-bounded uncertainty, in both of which the distributions of the random data entries are permitted to be unknown. The robust DEA models are implemented in a numerical example and the efficiency scores and rankings of these models are compared. The results indicate that the robust DEA approach could be a more reliable method for efficiency evaluation and ranking in MCDM problems.展开更多
The conventional data envelopment analysis (DEA) measures the relative efficiencies of a set of decision making units with exact values of inputs and outputs. In real-world prob- lems, however, inputs and outputs ty...The conventional data envelopment analysis (DEA) measures the relative efficiencies of a set of decision making units with exact values of inputs and outputs. In real-world prob- lems, however, inputs and outputs typically have some levels of fuzziness. To analyze a decision making unit (DMU) with fuzzy input/output data, previous studies provided the fuzzy DEA model and proposed an associated evaluating approach. Nonetheless, numerous deficiencies must still be improved, including the α- cut approaches, types of fuzzy numbers, and ranking techniques. Moreover, a fuzzy sample DMU still cannot be evaluated for the Fuzzy DEA model. Therefore, this paper proposes a fuzzy DEA model based on sample decision making unit (FSDEA). Five eval- uation approaches and the related algorithm and ranking methods are provided to test the fuzzy sample DMU of the FSDEA model. A numerical experiment is used to demonstrate and compare the results with those obtained using alternative approaches.展开更多
The classic data envelopment analysis(DEA) model is used to evaluate decision-making units'(DMUs) efficiency under the assumption that all DMUs are evaluated with the same criteria setting. Recently, new research...The classic data envelopment analysis(DEA) model is used to evaluate decision-making units'(DMUs) efficiency under the assumption that all DMUs are evaluated with the same criteria setting. Recently, new researches begin to focus on the efficiency analysis of non-homogeneous DMU arose by real practices such as the evaluation of departments in a university, where departments argue for the adoption of different criteria based on their disciplinary characteristics. A DEA procedure is proposed in this paper to address the efficiency analysis of two non-homogeneous DMU groups. Firstly, an analytical framework is established to compromise diversified input and output(IO) criteria from two nonhomogenous groups. Then, a criteria fusion operation is designed to obtain different DEA analysis strategies. Meanwhile, Friedman test is introduced to analyze the consistency of all efficiency results produced by different strategies. Next, ordered weighted averaging(OWA) operators are applied to integrate different information to reach final conclusions. Finally, a numerical example is used to illustrate the proposed method. The result indicates that the proposed method relaxes the restriction of the classical DEA model,and can provide more analytical flexibility to address different decision analysis scenarios arose from practical applications.展开更多
China implemented the public hospital reform in 2012. This study utilized bootstrapping data envelopment analysis(DEA) to evaluate the technical efficiency(TE) and productivity of county public hospitals in Easter...China implemented the public hospital reform in 2012. This study utilized bootstrapping data envelopment analysis(DEA) to evaluate the technical efficiency(TE) and productivity of county public hospitals in Eastern, Central, and Western China after the 2012 public hospital reform. Data from 127 county public hospitals(39, 45, and 43 in Eastern, Central, and Western China, respectively) were collected during 2012–2015. Changes of TE and productivity over time were estimated by bootstrapping DEA and bootstrapping Malmquist. The disparities in TE and productivity among public hospitals in the three regions of China were compared by Kruskal–Wallis H test and Mann–Whitney U test. The average bias-corrected TE values for the four-year period were 0.6442, 0.5785, 0.6099, and 0.6094 in Eastern, Central, and Western China, and the entire country respectively, with average non-technical efficiency, low pure technical efficiency(PTE), and high scale efficiency found. Productivity increased by 8.12%, 0.25%, 12.11%, and 11.58% in China and its three regions during 2012–2015, and such increase in productivity resulted from progressive technological changes by 16.42%, 6.32%, 21.08%, and 21.42%, respectively. The TE and PTE of the county hospitals significantly differed among the three regions of China. Eastern and Western China showed significantly higher TE and PTE than Central China. More than 60% of county public hospitals in China and its three areas operated at decreasing return scales. There was a considerable space for TE improvement in county hospitals in China and its three regions. During 2012–2015, the hospitals experienced progressive productivity; however, the PTE changed adversely. Moreover, Central China continuously achieved a significantly lower efficiency score than Eastern and Western China. Decision makers and administrators in China should identify the causes of the observed inefficiencies and take appropriate measures to increase the efficiency of county public hospitals in the three areas of China, especially in Central China.展开更多
Three data envelopment analysis (DEA) models were used to analyse the relative efficiencies of four AIDS treatments in AIDS Clinical Trial Group (ACTG) Study 193A(1 309 patients in total, classified into 4 age groups)...Three data envelopment analysis (DEA) models were used to analyse the relative efficiencies of four AIDS treatments in AIDS Clinical Trial Group (ACTG) Study 193A(1 309 patients in total, classified into 4 age groups). Results from the output-oriented BCC model show that Treatment 4 ( 600 mg of zidovudine plus 400 mg of didanosine plus 400 mg of nevirapine) is particularly efficient for age group 14—25, but not efficient for the older age groups; Treatment 1 (600 mg of zidovudine alternating monthly with 400 mg of didanosine)and Treatment 2 (600 mg of zidovudine plus 2.25 mg of zalcitabine) are efficient for the age groups 35—45 and 45— ; age group 25—35 does not have a particularly efficient treatment, but Treatments 1 and 2 are relatively good. The cost efficiency BCC model, which takes the treatment cost into account, gives similar results as the output-oriented model. Results from the indirect output-oriented BCC model, which allows the replacement among medicines, show that the efficiency of Treatment 2 has greatly decreased compared with that of the output-oriented model, and a set of optimal medicine amounts for different age groups is obtained.展开更多
Data envelopment analysis (DEA) has become a standard non parametric approach to productivity analysis, especially to relative efficiency analysis of decision making units (DMUs). Extended to the prediction field, it ...Data envelopment analysis (DEA) has become a standard non parametric approach to productivity analysis, especially to relative efficiency analysis of decision making units (DMUs). Extended to the prediction field, it can solve the prediction problem with multiple inputs and outputs which can not be solved easily by the regression analysis method.But the traditional DEA models can not solve the problem with undesirable outputs,so in this paper the inherent relationship between goal programming and the DEA method based on the relationship between multiple goal programming and goal programming is explored,and a mixed DEA model which can make all factors of inputs and undesirable outputs decrease in different proportions is built.And at the same time,all the factors of desirable outputs increase in different proportions.展开更多
Energy efficiency data from ethylene production equipment are of high dimension, dynamic and time sequential, so their evaluation is affected by many factors. Abnormal data from ethylene production are eliminated thro...Energy efficiency data from ethylene production equipment are of high dimension, dynamic and time sequential, so their evaluation is affected by many factors. Abnormal data from ethylene production are eliminated through consistency test, making the data consumption uniform to improve the comparability of data. Due to the limit of input and output data of decision making unit in data envelopment analysis(DEA), the energy efficiency data from the same technology in a certain year are disposed monthly using DEA. The DEA data of energy efficiency from the same technology are weighted and fused using analytic hierarchy process. The energy efficiency data from different technologies are evaluated by their relative effectiveness to find the direction of energy saving and consumption reduction.展开更多
Cloud computing offers numerous web-based services.The adoption of many Cloud applications has been hindered by concerns about data security and privacy.Cloud service providers’access to private information raises mo...Cloud computing offers numerous web-based services.The adoption of many Cloud applications has been hindered by concerns about data security and privacy.Cloud service providers’access to private information raises more security issues.In addition,Cloud computing is incompatible with several industries,including finance and government.Public-key cryptography is frequently cited as a significant advancement in cryptography.In contrast,the Digital Envelope that will be used combines symmetric and asymmetric methods to secure sensitive data.This study aims to design a Digital Envelope for distributed Cloud-based large data security using public-key cryptography.Through strategic design,the hybrid Envelope model adequately supports enterprises delivering routine customer services via independent multi-sourced entities.Both the Cloud service provider and the consumer benefit from the proposed scheme since it results in more resilient and secure services.The suggested approach employs a secret version of the distributed equation to ensure the highest level of security and confidentiality for large amounts of data.Based on the proposed scheme,a Digital Envelope application is developed which prohibits Cloud service providers from directly accessing insufficient or encrypted data.展开更多
文摘In the nonparametric data envelopment analysis literature,scale elasticity is evaluated in two alternative ways:using either the technical efficiency model or the cost efficiency model.This evaluation becomes problematic in several situations,for example(a)when input proportions change in the long run,(b)when inputs are heterogeneous,and(c)when firms face ex-ante price uncertainty in making their production decisions.To address these situations,a scale elasticity evaluation was performed using a value-based cost efficiency model.However,this alternative value-based scale elasticity evaluation is sensitive to the uncertainty and variability underlying input and output data.Therefore,in this study,we introduce a stochastic cost-efficiency model based on chance-constrained programming to develop a value-based measure of the scale elasticity of firms facing data uncertainty.An illustrative empirical application to the Indian banking industry comprising 71 banks for eight years(1998–2005)was made to compare inferences about their efficiency and scale properties.The key findings are as follows:First,both the deterministic model and our proposed stochastic model yield distinctly different results concerning the efficiency and scale elasticity scores at various tolerance levels of chance constraints.However,both models yield the same results at a tolerance level of 0.5,implying that the deterministic model is a special case of the stochastic model in that it reveals the same efficiency and returns to scale characterizations of banks.Second,the stochastic model generates higher efficiency scores for inefficient banks than its deterministic counterpart.Third,public banks exhibit higher efficiency than private and foreign banks.Finally,public and old private banks mostly exhibit either decreasing or constant returns to scale,whereas foreign and new private banks experience either increasing or decreasing returns to scale.Although the application of our proposed stochastic model is illustrative,it can be potentially applied to all firms in the information and distribution-intensive industry with high fixed costs,which have ample potential for reaping scale and scope benefits.
文摘“双碳”目标下,各类可再生能源发电技术发展迅速,综合权衡不同可再生能源发电方案的综合效益对可再生能源的优化设计具有重要意义。综合考虑经济效益、环境效益、能源效益和社会效益4个层面,提出了一种基于模糊决策试验和评价实验(decision making trial and evaluation laboratory,DEMATEL)与超效率数据包络分析(data envelopment analysis,DEA)模型的可再生能源发电技术综合效益评估方法。该方法分为投入-产出指标体系构建和综合评估2个阶段。首先,利用三角直觉模糊数处理模糊评价信息,将其与DEMATEL相结合量化各指标之间相互影响关系,基于指标间逻辑分析结果建立投入-产出评估指标体系。然后,基于超效率DEA模型对各可再生能源发电方案进行评估排序,结合投入冗余和产出不足分析结果给出各方案的针对性改善建议,以期为进一步选择和确定可再生能源产业发展战略提供参考。最后以某省10类可再生能源发电单元为研究对象,基于所提研究方法进行综合评估和分析,并与多准则妥协解排序法和熵权法进行对比分析,验证了所提方法的有效性。
基金Project 70771105 supported by the National Natural Science Foundation of China
文摘In recent years improper allocation of safety input has prevailed in coal mines in China, which resulted in the frequent accidents in coal mining operation. A comprehensive assessment of the input efficiency of coal mine safety should lead to improved efficiency in the use of funds and management resources. This helps government and enterprise managers better understand how safety inputs are used and to optimize allocation of resources. Study on coal mine's efficiency assessment of safety input was con- ducted in this paper. A C^2R model with non-Archimedean infinitesimal vector based on output is established after consideration of the input characteristics and the model properties. An assessment of an operating mine was done using a specific set of input and output criteria. It is found that the safety input was efficient in 2002 and 2005 and was weakly efficient in 2003. However, the efficiency was relatively low in both 2001 and 2004. The safety input resources can be optimized and adjusted by means of projection theory. Such analysis shows that, on average in 2001 and 2004, 45% of the expended funds could have been saved. Likewise, 10% of the safety management and technical staff could have been eliminated and working hours devoted to safety could have been reduced by 12%. These conditions could have Riven the same results.
文摘Objective To evaluate the environmental and technical efficiencies of China's industrial sectors and provide appropriate advice for policy makers in the context of rapid economic growth and concurrent serious environmental damages caused by industrial pollutants. Methods A data of envelopment analysis (DEA) framework crediting both reduction of pollution outputs and expansion of good outputs was designed as a model to compute environmental efficiency of China's regional industrial systems. Results As shown by the geometric mean of environmental efficiency, if other inputs were made constant and good outputs were not to be improved, the air pollution outputs would have the potential to be decreased by about 60% in the whole China. Conclusion Both environmental and technical efficiencies have the potential to be greatly improved in China, which may provide some advice for policy-makers.
文摘The application of data envelopment analysis (DEA) as a multiple criteria decision making (MCDM) technique has been gaining more and more attention in recent research. In the practice of applying DEA approach, the appearance of uncertainties on input and output data of decision making unit (DMU) might make the nominal solution infeasible and lead to the efficiency scores meaningless from practical view. This paper analyzes the impact of data uncertainty on the evaluation results of DEA, and proposes several robust DEA models based on the adaptation of recently developed robust optimization approaches, which would be immune against input and output data uncertainties. The robust DEA models developed are based on input-oriented and outputoriented CCR model, respectively, when the uncertainties appear in output data and input data separately. Furthermore, the robust DEA models could deal with random symmetric uncertainty and unknown-but-bounded uncertainty, in both of which the distributions of the random data entries are permitted to be unknown. The robust DEA models are implemented in a numerical example and the efficiency scores and rankings of these models are compared. The results indicate that the robust DEA approach could be a more reliable method for efficiency evaluation and ranking in MCDM problems.
基金supported by the National Natural Science Foundation of China (70961005)211 Project for Postgraduate Student Program of Inner Mongolia University+1 种基金National Natural Science Foundation of Inner Mongolia (2010Zd342011MS1002)
文摘The conventional data envelopment analysis (DEA) measures the relative efficiencies of a set of decision making units with exact values of inputs and outputs. In real-world prob- lems, however, inputs and outputs typically have some levels of fuzziness. To analyze a decision making unit (DMU) with fuzzy input/output data, previous studies provided the fuzzy DEA model and proposed an associated evaluating approach. Nonetheless, numerous deficiencies must still be improved, including the α- cut approaches, types of fuzzy numbers, and ranking techniques. Moreover, a fuzzy sample DMU still cannot be evaluated for the Fuzzy DEA model. Therefore, this paper proposes a fuzzy DEA model based on sample decision making unit (FSDEA). Five eval- uation approaches and the related algorithm and ranking methods are provided to test the fuzzy sample DMU of the FSDEA model. A numerical experiment is used to demonstrate and compare the results with those obtained using alternative approaches.
基金supported by the National Natural Science Foundation of China(71471087)
文摘The classic data envelopment analysis(DEA) model is used to evaluate decision-making units'(DMUs) efficiency under the assumption that all DMUs are evaluated with the same criteria setting. Recently, new researches begin to focus on the efficiency analysis of non-homogeneous DMU arose by real practices such as the evaluation of departments in a university, where departments argue for the adoption of different criteria based on their disciplinary characteristics. A DEA procedure is proposed in this paper to address the efficiency analysis of two non-homogeneous DMU groups. Firstly, an analytical framework is established to compromise diversified input and output(IO) criteria from two nonhomogenous groups. Then, a criteria fusion operation is designed to obtain different DEA analysis strategies. Meanwhile, Friedman test is introduced to analyze the consistency of all efficiency results produced by different strategies. Next, ordered weighted averaging(OWA) operators are applied to integrate different information to reach final conclusions. Finally, a numerical example is used to illustrate the proposed method. The result indicates that the proposed method relaxes the restriction of the classical DEA model,and can provide more analytical flexibility to address different decision analysis scenarios arose from practical applications.
基金supported by the National Natural Science Foundation of China(No.71473099)
文摘China implemented the public hospital reform in 2012. This study utilized bootstrapping data envelopment analysis(DEA) to evaluate the technical efficiency(TE) and productivity of county public hospitals in Eastern, Central, and Western China after the 2012 public hospital reform. Data from 127 county public hospitals(39, 45, and 43 in Eastern, Central, and Western China, respectively) were collected during 2012–2015. Changes of TE and productivity over time were estimated by bootstrapping DEA and bootstrapping Malmquist. The disparities in TE and productivity among public hospitals in the three regions of China were compared by Kruskal–Wallis H test and Mann–Whitney U test. The average bias-corrected TE values for the four-year period were 0.6442, 0.5785, 0.6099, and 0.6094 in Eastern, Central, and Western China, and the entire country respectively, with average non-technical efficiency, low pure technical efficiency(PTE), and high scale efficiency found. Productivity increased by 8.12%, 0.25%, 12.11%, and 11.58% in China and its three regions during 2012–2015, and such increase in productivity resulted from progressive technological changes by 16.42%, 6.32%, 21.08%, and 21.42%, respectively. The TE and PTE of the county hospitals significantly differed among the three regions of China. Eastern and Western China showed significantly higher TE and PTE than Central China. More than 60% of county public hospitals in China and its three areas operated at decreasing return scales. There was a considerable space for TE improvement in county hospitals in China and its three regions. During 2012–2015, the hospitals experienced progressive productivity; however, the PTE changed adversely. Moreover, Central China continuously achieved a significantly lower efficiency score than Eastern and Western China. Decision makers and administrators in China should identify the causes of the observed inefficiencies and take appropriate measures to increase the efficiency of county public hospitals in the three areas of China, especially in Central China.
基金National Natural Science Foundation of China (No 10571134)
文摘Three data envelopment analysis (DEA) models were used to analyse the relative efficiencies of four AIDS treatments in AIDS Clinical Trial Group (ACTG) Study 193A(1 309 patients in total, classified into 4 age groups). Results from the output-oriented BCC model show that Treatment 4 ( 600 mg of zidovudine plus 400 mg of didanosine plus 400 mg of nevirapine) is particularly efficient for age group 14—25, but not efficient for the older age groups; Treatment 1 (600 mg of zidovudine alternating monthly with 400 mg of didanosine)and Treatment 2 (600 mg of zidovudine plus 2.25 mg of zalcitabine) are efficient for the age groups 35—45 and 45— ; age group 25—35 does not have a particularly efficient treatment, but Treatments 1 and 2 are relatively good. The cost efficiency BCC model, which takes the treatment cost into account, gives similar results as the output-oriented model. Results from the indirect output-oriented BCC model, which allows the replacement among medicines, show that the efficiency of Treatment 2 has greatly decreased compared with that of the output-oriented model, and a set of optimal medicine amounts for different age groups is obtained.
文摘Data envelopment analysis (DEA) has become a standard non parametric approach to productivity analysis, especially to relative efficiency analysis of decision making units (DMUs). Extended to the prediction field, it can solve the prediction problem with multiple inputs and outputs which can not be solved easily by the regression analysis method.But the traditional DEA models can not solve the problem with undesirable outputs,so in this paper the inherent relationship between goal programming and the DEA method based on the relationship between multiple goal programming and goal programming is explored,and a mixed DEA model which can make all factors of inputs and undesirable outputs decrease in different proportions is built.And at the same time,all the factors of desirable outputs increase in different proportions.
基金Supported by the National Natural Science Foundation of China(61374166)the Doctoral Fund of Ministry of Education of China(20120010110010)the Fundamental Research Funds for the Central Universities(YS1404)
文摘Energy efficiency data from ethylene production equipment are of high dimension, dynamic and time sequential, so their evaluation is affected by many factors. Abnormal data from ethylene production are eliminated through consistency test, making the data consumption uniform to improve the comparability of data. Due to the limit of input and output data of decision making unit in data envelopment analysis(DEA), the energy efficiency data from the same technology in a certain year are disposed monthly using DEA. The DEA data of energy efficiency from the same technology are weighted and fused using analytic hierarchy process. The energy efficiency data from different technologies are evaluated by their relative effectiveness to find the direction of energy saving and consumption reduction.
文摘Cloud computing offers numerous web-based services.The adoption of many Cloud applications has been hindered by concerns about data security and privacy.Cloud service providers’access to private information raises more security issues.In addition,Cloud computing is incompatible with several industries,including finance and government.Public-key cryptography is frequently cited as a significant advancement in cryptography.In contrast,the Digital Envelope that will be used combines symmetric and asymmetric methods to secure sensitive data.This study aims to design a Digital Envelope for distributed Cloud-based large data security using public-key cryptography.Through strategic design,the hybrid Envelope model adequately supports enterprises delivering routine customer services via independent multi-sourced entities.Both the Cloud service provider and the consumer benefit from the proposed scheme since it results in more resilient and secure services.The suggested approach employs a secret version of the distributed equation to ensure the highest level of security and confidentiality for large amounts of data.Based on the proposed scheme,a Digital Envelope application is developed which prohibits Cloud service providers from directly accessing insufficient or encrypted data.