Data fusion, a new research domain, is the integration and extension of modem information techniques and many other subjects. The data fusion concept is introduced and the Dempster-Shafer evidence deduction is describ...Data fusion, a new research domain, is the integration and extension of modem information techniques and many other subjects. The data fusion concept is introduced and the Dempster-Shafer evidence deduction is described and applied to oil and gas detection. An example of the method is shown using numerical simulation data. The processing result indicates that the data fusion method can be widely used in hydrocarbon detection.展开更多
Based on the framework of evidence theory, data fusion aims at obtaining a single Basic Probability Assignment (BPA) function by combining several belief functions from distinct information sources. Dempster’s rule o...Based on the framework of evidence theory, data fusion aims at obtaining a single Basic Probability Assignment (BPA) function by combining several belief functions from distinct information sources. Dempster’s rule of combination is the most popular rule of combinations, but it is a poor solution for the management of the conflict between various information sources at the normalization step. Even when it faces high conflict information, the classical Dempster-Shafer’s (D-S) evidence theory can involve counter-intuitive results. This paper presents a modified averaging method to combine conflicting evidence based on the distance of evidences; and also gives the weighted average of the evidence in the system. Numerical examples showed that the proposed method can realize the modification ideas and also will provide reasonable results with good convergence efficiency.展开更多
Dempster-Shafer(D-S)evidence theory is a key technology for integrating uncertain information from multiple sources.However,the combination rules can be paradoxical when the evidence seriously conflict with each other...Dempster-Shafer(D-S)evidence theory is a key technology for integrating uncertain information from multiple sources.However,the combination rules can be paradoxical when the evidence seriously conflict with each other.In the paper,we propose a novel combination algorithm based on unsupervised Density-Based Spatial Clustering of Applications with Noise(DBSCAN)density clustering.In the proposed mechanism,firstly,the original evidence sets are preprocessed by DBSCAN density clustering,and a successfully focal element similarity criteria is used to mine the potential information between the evidence,and make a correct measure of the conflict evidence.Then,two different discount factors are adopted to revise the original evidence sets,based on the result of DBSCAN density clustering.Finally,we conduct the information fusion for the revised evidence sets by D-S combination rules.Simulation results show that the proposed method can effectively solve the synthesis problem of high-conflict evidence,with better accuracy,stability and convergence speed.展开更多
Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rul...Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rule are analyzed and compared. A new combination approach is proposed. Calculate the reliabilities of evidence sources using existing evidences. Construct reliabilities judge matrixes and get the weights of each evidence source. Weight average all inputted evidences. Combine processed evidences with D-S combination rule repeatedly to identify a target. The application in multi-sensor target reeognition as well as the comparison with typical alternatives all validated that this approach can dispose highly conflict evidences efficiently and get reasonable reeognition results rapidly.展开更多
The study on alternative combination rules in Dempster- Shafer theory (DST) when evidences are in conflict has emerged again recently as an interesting topic, especially in data/information fusion applications. The ...The study on alternative combination rules in Dempster- Shafer theory (DST) when evidences are in conflict has emerged again recently as an interesting topic, especially in data/information fusion applications. The earlier researches have mainly focused on investigating the alternative which would be appropriate for the conflicting situation, under the assumption that a conflict is identified. However, the current research shows that not only the combination rule but also the classical conflict coefficient in DST are not correct to determine the conflict degree between two pieces of evidences. Most existing methods of measuring conflict do not consider the open world situation, whose frame of discernment is incomplete. To solve this problem, a new conflict representa- tion model to determine the conflict degree between evidences is proposed in the generalized power space, which contains two parameters: the conflict distance and the conflict coefficient of inconsistent evidences. This paper argues that only when the con- flict measure value in the new representation model is high, it is safe to say the evidences are in conflict. Experiments illustrate the efficiency of the proposed conflict representation model.展开更多
In the research of uncertain information processing,Dempster-Shafer Theory(DST)provides a framework for dealing with uncertain information,where evidence is defined on a Frame of Discernment(FOD)consisting of mutually...In the research of uncertain information processing,Dempster-Shafer Theory(DST)provides a framework for dealing with uncertain information,where evidence is defined on a Frame of Discernment(FOD)consisting of mutually exclusive elements.However,the requirement of exclusiveness on FOD sometimes is not satisfied,as shown in Dezert-Smarandache Theory(DSm T),a derivative of DST.In DSm T,the non-exclusiveness is expressed by propositions’intersection and the fusion of evidence is realized through a Proportional Conflict Redistribution(PCR)rule.In order to handle non-exclusive FODs,a new framework called D Number Theory(DNT)has been proposed recently,which quantifies the non-exclusive degree between propositions different from DSm T.In previous studies,an Exclusive Conflict Redistribution(ECR)rule has been designed in DNT to implement the fusion of evidence defined on a non-exclusive FOD,but there are some deficiencies in the ECR rule.In this paper,a new rule called ECR-PCR rule is proposed by combining the ECR and PCR rules to better implement the fusion of evidence defined on a nonexclusive FOD.Within the proposed rule,the definition of conflict utilizes the idea of ECR’s exclusive conflict,and the disposal of conflict is following the idea of PCR’s proportional redistribution.Properties of the ECR-PCR rule are presented.The effectiveness of the proposed new rule is verified through numerical examples and applications,in comparison with other fusion methods.展开更多
Aiming at the invalidation of DS theory dealing with the evidence in a high conflict and reducing confidence level of DSm theory processing a low conflict,this paper proposes an interactive-adaptive combination rule. ...Aiming at the invalidation of DS theory dealing with the evidence in a high conflict and reducing confidence level of DSm theory processing a low conflict,this paper proposes an interactive-adaptive combination rule. Adopting the angle similarity based on hyper-power set as the weight of generalized Dempster rule and PCR rule,the new rule adaptively processes various evidence combination issues. In this way,the rule can obtain not only the better fusion of decision making effect in a low conflict,but also the solution to the synthesis in a high conflict. Simulation analysis demonstrates the validity and applicability from this rule of combination.展开更多
文摘Data fusion, a new research domain, is the integration and extension of modem information techniques and many other subjects. The data fusion concept is introduced and the Dempster-Shafer evidence deduction is described and applied to oil and gas detection. An example of the method is shown using numerical simulation data. The processing result indicates that the data fusion method can be widely used in hydrocarbon detection.
基金Project (No. 51476040103JW13) supported by the National DefenseKey Laboratory of Target and Environment Feature of China
文摘Based on the framework of evidence theory, data fusion aims at obtaining a single Basic Probability Assignment (BPA) function by combining several belief functions from distinct information sources. Dempster’s rule of combination is the most popular rule of combinations, but it is a poor solution for the management of the conflict between various information sources at the normalization step. Even when it faces high conflict information, the classical Dempster-Shafer’s (D-S) evidence theory can involve counter-intuitive results. This paper presents a modified averaging method to combine conflicting evidence based on the distance of evidences; and also gives the weighted average of the evidence in the system. Numerical examples showed that the proposed method can realize the modification ideas and also will provide reasonable results with good convergence efficiency.
文摘Dempster-Shafer(D-S)evidence theory is a key technology for integrating uncertain information from multiple sources.However,the combination rules can be paradoxical when the evidence seriously conflict with each other.In the paper,we propose a novel combination algorithm based on unsupervised Density-Based Spatial Clustering of Applications with Noise(DBSCAN)density clustering.In the proposed mechanism,firstly,the original evidence sets are preprocessed by DBSCAN density clustering,and a successfully focal element similarity criteria is used to mine the potential information between the evidence,and make a correct measure of the conflict evidence.Then,two different discount factors are adopted to revise the original evidence sets,based on the result of DBSCAN density clustering.Finally,we conduct the information fusion for the revised evidence sets by D-S combination rules.Simulation results show that the proposed method can effectively solve the synthesis problem of high-conflict evidence,with better accuracy,stability and convergence speed.
基金This project was supported by the National "863" High Technology Research and Development Program of China(2001AA602021)
文摘Evidence theory is widely used in the field of target recognition. The invalidation problem of this theory when dealing with highly conflict evidences is a research hotspot. Several alternatives of the combination rule are analyzed and compared. A new combination approach is proposed. Calculate the reliabilities of evidence sources using existing evidences. Construct reliabilities judge matrixes and get the weights of each evidence source. Weight average all inputted evidences. Combine processed evidences with D-S combination rule repeatedly to identify a target. The application in multi-sensor target reeognition as well as the comparison with typical alternatives all validated that this approach can dispose highly conflict evidences efficiently and get reasonable reeognition results rapidly.
基金supported by the National Natural Science Foundation of China (60572161 60874105)+4 种基金the Excellent Ph.D. Paper Author Foundation of China (200443)the Postdoctoral Science Foundation of China (20070421094)the Program for New Century Excellent Talents in University (NCET-08-0345)the Shanghai Rising-Star Program(09QA1402900)the Ministry of Education Key Lab of Intelligent Computing & Signal Processing (2009ICIP03)
文摘The study on alternative combination rules in Dempster- Shafer theory (DST) when evidences are in conflict has emerged again recently as an interesting topic, especially in data/information fusion applications. The earlier researches have mainly focused on investigating the alternative which would be appropriate for the conflicting situation, under the assumption that a conflict is identified. However, the current research shows that not only the combination rule but also the classical conflict coefficient in DST are not correct to determine the conflict degree between two pieces of evidences. Most existing methods of measuring conflict do not consider the open world situation, whose frame of discernment is incomplete. To solve this problem, a new conflict representa- tion model to determine the conflict degree between evidences is proposed in the generalized power space, which contains two parameters: the conflict distance and the conflict coefficient of inconsistent evidences. This paper argues that only when the con- flict measure value in the new representation model is high, it is safe to say the evidences are in conflict. Experiments illustrate the efficiency of the proposed conflict representation model.
基金partially supported by the National Natural Science Foundation of China(No.61703338)。
文摘In the research of uncertain information processing,Dempster-Shafer Theory(DST)provides a framework for dealing with uncertain information,where evidence is defined on a Frame of Discernment(FOD)consisting of mutually exclusive elements.However,the requirement of exclusiveness on FOD sometimes is not satisfied,as shown in Dezert-Smarandache Theory(DSm T),a derivative of DST.In DSm T,the non-exclusiveness is expressed by propositions’intersection and the fusion of evidence is realized through a Proportional Conflict Redistribution(PCR)rule.In order to handle non-exclusive FODs,a new framework called D Number Theory(DNT)has been proposed recently,which quantifies the non-exclusive degree between propositions different from DSm T.In previous studies,an Exclusive Conflict Redistribution(ECR)rule has been designed in DNT to implement the fusion of evidence defined on a non-exclusive FOD,but there are some deficiencies in the ECR rule.In this paper,a new rule called ECR-PCR rule is proposed by combining the ECR and PCR rules to better implement the fusion of evidence defined on a nonexclusive FOD.Within the proposed rule,the definition of conflict utilizes the idea of ECR’s exclusive conflict,and the disposal of conflict is following the idea of PCR’s proportional redistribution.Properties of the ECR-PCR rule are presented.The effectiveness of the proposed new rule is verified through numerical examples and applications,in comparison with other fusion methods.
基金supported by Pre-Research Foundation of PLA(LY200838014)supported by the PLA Research Program of Science and Technology (KJ08062)
文摘Aiming at the invalidation of DS theory dealing with the evidence in a high conflict and reducing confidence level of DSm theory processing a low conflict,this paper proposes an interactive-adaptive combination rule. Adopting the angle similarity based on hyper-power set as the weight of generalized Dempster rule and PCR rule,the new rule adaptively processes various evidence combination issues. In this way,the rule can obtain not only the better fusion of decision making effect in a low conflict,but also the solution to the synthesis in a high conflict. Simulation analysis demonstrates the validity and applicability from this rule of combination.