To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the ...To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively.展开更多
With the prevalence of big-data technology,intricate,nanoscale Multi-Processor System-on-Chips(MP-SoCs)have been used in various safety-critical applications.However,with no extra countermeasures taken,this widespread...With the prevalence of big-data technology,intricate,nanoscale Multi-Processor System-on-Chips(MP-SoCs)have been used in various safety-critical applications.However,with no extra countermeasures taken,this widespread use of MP-SoCs can lead to an undesirable decrease in their dependability.This study presents a promising approach using a group of Embedded Instruments(EIs)inside a processor core for health monitoring.Multiple health monitoring datasets obtained from the employed EIs are sampled and collated via the implemented experiment and thereafter used for conducting its remaining useful lifetime prognostics.This enables MP-SoCs to undertake preventive self-repair,thus realizing a zero mean downtime system and ensuring improved dependability.In addition,a principal component analysis based algorithm is designed for realizing the EI data fusion.Subsequently,a genetic algorithm based degradation optimization is employed to create a lifetime prediction model with respect to the processor.展开更多
Market timing prediction of stock investment is an important decision problem with uncertainty and risk in the financial activity.An algorithm for market timing prediction of stock investment is proposed in this paper...Market timing prediction of stock investment is an important decision problem with uncertainty and risk in the financial activity.An algorithm for market timing prediction of stock investment is proposed in this paper.Considering the close relationship in the stock market and the economic data,we find the correlation of synthetical economic data and the equity returns with the help of the combination of fuzzy logic and genetic algorithm.Finally,the application of stock market is included to test the effectiveness of the algorithm.展开更多
An intrusion detection (ID) model is proposed based on the fuzzy data mining method. A major difficulty of anomaly ID is that patterns of the normal behavior change with time. In addition, an actual intrusion with a...An intrusion detection (ID) model is proposed based on the fuzzy data mining method. A major difficulty of anomaly ID is that patterns of the normal behavior change with time. In addition, an actual intrusion with a small deviation may match normal patterns. So the intrusion behavior cannot be detected by the detection system.To solve the problem, fuzzy data mining technique is utilized to extract patterns representing the normal behavior of a network. A set of fuzzy association rules mined from the network data are shown as a model of “normal behaviors”. To detect anomalous behaviors, fuzzy association rules are generated from new audit data and the similarity with sets mined from “normal” data is computed. If the similarity values are lower than a threshold value,an alarm is given. Furthermore, genetic algorithms are used to adjust the fuzzy membership functions and to select an appropriate set of features.展开更多
Energy is one of the most important items to determine the network lifetime due to low power energy nodes included in the network. Generally, data aggregation tree concept is used to find an energy efficient solution....Energy is one of the most important items to determine the network lifetime due to low power energy nodes included in the network. Generally, data aggregation tree concept is used to find an energy efficient solution. However, even the best aggregation tree does not share the load of data packets to the transmitting nodes fairly while it is consuming the lowest possible energy of the network. Therefore, after some rounds, this problem causes to consume the whole energy of some heavily loaded nodes and hence results in with the death of the network. In this paper, by using the Genetic Algorithm (GA), we investigate the energy efficient data collecting spanning trees to find a suitable route which balances the data load throughout the network and thus balances the residual energy in the network in addition to consuming totally low power of the network. Using an algorithm which is able to balance the residual energy among the nodes can help the network to withstand more and consequently extend its own lifetime. In this work, we calculate all possible routes represented by the aggregation trees through the genetic algorithm. GA finds the optimum tree which is able to balance the data load and the energy in the network. Simulation results show that this balancing operation practically increases the network lifetime.展开更多
This paper combines computational intelligence tools: neural network, fuzzylogic, and genetic algorithm to develop a data mining architecture (NFGDM), which discovers patternsand represents them in understandable form...This paper combines computational intelligence tools: neural network, fuzzylogic, and genetic algorithm to develop a data mining architecture (NFGDM), which discovers patternsand represents them in understandable forms. In the NFGDM, input data arepreprocesscd byfuzzification, the preprocessed data of input variables arc then used to train a radial basisprobabilistic neural network to classify the dataset according to the classes considered, A ruleextraction technique is then applied in order to extract explicit knowledge from the trained neuralnetworks and represent it m the form of fuzzy if-then rules. In the final stage, genetic algorithmis used as a rule-pruning module to eliminate those weak rules that are still in the rule bases.Comparison with some known neural network classifier, the architecture has fast learning speed, andit is characterized by the incorporation of the possibility information into the consequents ofclassification rules in human understandable forms. The experiments show that the NFGDM is moreefficient and more robust than traditional decision tree method.展开更多
The recent growth of communication and sensor technology results in the enlargement of a new attractive and challenging area-wireless sensor networks (WSNs). A network comprising of several minute wireless sensor node...The recent growth of communication and sensor technology results in the enlargement of a new attractive and challenging area-wireless sensor networks (WSNs). A network comprising of several minute wireless sensor nodes which are organized in a dense manner is called as a Wireless Sensor Network (WSN). Every node estimates the state of its surroundings in this network. The estimated results are then converted into the signal form in order to determine the features related to this technique after the processing of the signals. It’s high computational environment with limited and controlled broadcast range, processing, as well as limited energy. The embedded soft computing approach in wireless sensor networks is suggested. This approach means a grouping of embedded fuzzy logic and neural networks models for information processing in complex environment with unsure, rough, fuzzy measuring data. It is generalization of soft computing concept for the embedded, distributed, adaptive systems.展开更多
文摘To establish a parallel fusion approach of processing high dimensional information, the model and criterion of multisensor fuzzy stochastic data fusion were presented. In order to design genetic algorithm fusion, the fusion parameter coding, initial population and fitness function establishing, and fuzzy logic controller designing for genetic operations and probability choosing were completed. The discussion on the highly dimensional fusion was given. For a moving target with the division of 1 64 (velocity) and 1 75 (acceleration), the precision of fusion is 0 94 and 0 98 respectively. The fusion approach can improve the reliability and decision precision effectively.
基金This study was supported by the National Natural Science Foundation of China(Nos.12271259,12271098,and 11971349)EU project BASTION(No.619871)+2 种基金Horizon 2020 IMMORTAL(No.644905)Recore Systems B.V.(the Netherlands)Ridgetop Group Inc.(the Netherlands)are acknowledged for their contributions to IC design and measurement。
文摘With the prevalence of big-data technology,intricate,nanoscale Multi-Processor System-on-Chips(MP-SoCs)have been used in various safety-critical applications.However,with no extra countermeasures taken,this widespread use of MP-SoCs can lead to an undesirable decrease in their dependability.This study presents a promising approach using a group of Embedded Instruments(EIs)inside a processor core for health monitoring.Multiple health monitoring datasets obtained from the employed EIs are sampled and collated via the implemented experiment and thereafter used for conducting its remaining useful lifetime prognostics.This enables MP-SoCs to undertake preventive self-repair,thus realizing a zero mean downtime system and ensuring improved dependability.In addition,a principal component analysis based algorithm is designed for realizing the EI data fusion.Subsequently,a genetic algorithm based degradation optimization is employed to create a lifetime prediction model with respect to the processor.
基金National Natural Science Foundation of China!(No.69874 0 2 8)
文摘Market timing prediction of stock investment is an important decision problem with uncertainty and risk in the financial activity.An algorithm for market timing prediction of stock investment is proposed in this paper.Considering the close relationship in the stock market and the economic data,we find the correlation of synthetical economic data and the equity returns with the help of the combination of fuzzy logic and genetic algorithm.Finally,the application of stock market is included to test the effectiveness of the algorithm.
文摘An intrusion detection (ID) model is proposed based on the fuzzy data mining method. A major difficulty of anomaly ID is that patterns of the normal behavior change with time. In addition, an actual intrusion with a small deviation may match normal patterns. So the intrusion behavior cannot be detected by the detection system.To solve the problem, fuzzy data mining technique is utilized to extract patterns representing the normal behavior of a network. A set of fuzzy association rules mined from the network data are shown as a model of “normal behaviors”. To detect anomalous behaviors, fuzzy association rules are generated from new audit data and the similarity with sets mined from “normal” data is computed. If the similarity values are lower than a threshold value,an alarm is given. Furthermore, genetic algorithms are used to adjust the fuzzy membership functions and to select an appropriate set of features.
文摘Energy is one of the most important items to determine the network lifetime due to low power energy nodes included in the network. Generally, data aggregation tree concept is used to find an energy efficient solution. However, even the best aggregation tree does not share the load of data packets to the transmitting nodes fairly while it is consuming the lowest possible energy of the network. Therefore, after some rounds, this problem causes to consume the whole energy of some heavily loaded nodes and hence results in with the death of the network. In this paper, by using the Genetic Algorithm (GA), we investigate the energy efficient data collecting spanning trees to find a suitable route which balances the data load throughout the network and thus balances the residual energy in the network in addition to consuming totally low power of the network. Using an algorithm which is able to balance the residual energy among the nodes can help the network to withstand more and consequently extend its own lifetime. In this work, we calculate all possible routes represented by the aggregation trees through the genetic algorithm. GA finds the optimum tree which is able to balance the data load and the energy in the network. Simulation results show that this balancing operation practically increases the network lifetime.
基金Supported by the National Research Foundation for the Doctoral Program of Higher Education of China (20030487032)
文摘This paper combines computational intelligence tools: neural network, fuzzylogic, and genetic algorithm to develop a data mining architecture (NFGDM), which discovers patternsand represents them in understandable forms. In the NFGDM, input data arepreprocesscd byfuzzification, the preprocessed data of input variables arc then used to train a radial basisprobabilistic neural network to classify the dataset according to the classes considered, A ruleextraction technique is then applied in order to extract explicit knowledge from the trained neuralnetworks and represent it m the form of fuzzy if-then rules. In the final stage, genetic algorithmis used as a rule-pruning module to eliminate those weak rules that are still in the rule bases.Comparison with some known neural network classifier, the architecture has fast learning speed, andit is characterized by the incorporation of the possibility information into the consequents ofclassification rules in human understandable forms. The experiments show that the NFGDM is moreefficient and more robust than traditional decision tree method.
文摘The recent growth of communication and sensor technology results in the enlargement of a new attractive and challenging area-wireless sensor networks (WSNs). A network comprising of several minute wireless sensor nodes which are organized in a dense manner is called as a Wireless Sensor Network (WSN). Every node estimates the state of its surroundings in this network. The estimated results are then converted into the signal form in order to determine the features related to this technique after the processing of the signals. It’s high computational environment with limited and controlled broadcast range, processing, as well as limited energy. The embedded soft computing approach in wireless sensor networks is suggested. This approach means a grouping of embedded fuzzy logic and neural networks models for information processing in complex environment with unsure, rough, fuzzy measuring data. It is generalization of soft computing concept for the embedded, distributed, adaptive systems.