期刊文献+
共找到962篇文章
< 1 2 49 >
每页显示 20 50 100
Spatial Heterogeneity Modeling Using Machine Learning Based on a Hybrid of Random Forest and Convolutional Neural Network (CNN)
1
作者 Amadou Kindy Barry Anthony Waititu Gichuhi Lawrence Nderu 《Journal of Data Analysis and Information Processing》 2024年第3期319-347,共29页
Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a p... Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas. 展开更多
关键词 Spatial Heterogeneity Spatial data Feature Selection STANDARDIZATION Machine Learning Models hybrid Models
下载PDF
ASSIMILATION OF REAL OBSERVATIONAL DATA WITH THE GSI-HYBRID DATA ASSIMILATION SYSTEM TO IMPROVE TYPHOON FORECAST 被引量:6
2
作者 李泓 骆婧瑶 陈葆德 《Journal of Tropical Meteorology》 SCIE 2015年第4期400-407,共8页
A hybrid GSI (Grid-point Statistical Interpolation)-ETKF (Ensemble Transform Kalman Filter) data assimila- tion system has been recently developed for the WRF (Weather Research and Forecasting) model and tested ... A hybrid GSI (Grid-point Statistical Interpolation)-ETKF (Ensemble Transform Kalman Filter) data assimila- tion system has been recently developed for the WRF (Weather Research and Forecasting) model and tested with simu- lated observations for tropical cyclone (TC) forecast. This system is based on the existing GSI but with ensemble back- ground information incorporated. As a follow-up, this work extends the new system to assimilate real observations to further understand the hybrid scheme. As a first effort to explore the system with real observations, relatively coarse grid resolution (27 km) is used. A case study of typhoon Muifa (2011) is performed to assimilate real observations in- cluding conventional in-situ and satellite data. The hybrid system with flow-dependent ensemble eovariance shows sig- nificant improvements with respect to track forecast compared to the standard GSI system which in theory is three di- mensional variational analysis (3DVAR). By comparing the analyses, analysis increments and forecasts, the hybrid sys- tem is found to be potentially able to recognize the existence of TC vortex, adjust its position systematically, better de- scribe the asymmetric structure of typhoon Muifa and maintain the dynamic and thermodynamic balance in typhoon ini- tial field. In addition, a cold-start hybrid approach by using the global ensembles to provide flow-dependent error is test- ed and similar results are revealed with those from cycled GSI-ETKF approach. 展开更多
关键词 hybrid data assimilation GSI ETKF tropical cyclone
下载PDF
SCMR:a semantic-based coherence micro-cluster recognition algorithm for hybrid web data stream 被引量:2
3
作者 王珉 Wang Yongbin Li Ying 《High Technology Letters》 EI CAS 2016年第2期224-232,共9页
Data aggregation from various web sources is very significant for web data analysis domain. In ad- dition, the recognition of coherence micro cluster is one of the most interesting issues in the field of data aggregat... Data aggregation from various web sources is very significant for web data analysis domain. In ad- dition, the recognition of coherence micro cluster is one of the most interesting issues in the field of data aggregation. Until now, many algorithms have been proposed to work on this issue. However, the deficiency of these solutions is that they cannot recognize the micro-cluster data stream accurately. A semantic-based coherent micro-cluster recognition algorithm for hybrid web data stream is nronosed.Firstly, an objective function is proposed to recognize the coherence micro-cluster and then the coher- ence micro-cluster recognition algorithm for hybrid web data stream based on semantic is raised. Fi- 展开更多
关键词 hybrid web data stream coherence micro-clustering entity unified object coher-ence semantic computing
下载PDF
The 8×10 GHz Receiver Optical Subassembly Based on Silica Hybrid Integration Technology for Data Center Interconnection 被引量:3
4
作者 Chao-Yi Li Jun-Ming An +8 位作者 Jiu-Qi Wang Liang-Liang Wang Jia-Shun Zhang Jian-Guang Li Yuan-Da Wu Yue Wang Xiao-Jie Yin Yong Li Fei Zhong 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期39-43,共5页
An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid in... An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid integration technology. Multimode output waveguides in the silica AWG with 2% refractive index difference are used to obtain fiat-top spectra. The output waveguide facet is polished to 45° bevel to change the light propagation direction into the mesa-type PIN PD, which simplifies the packaging process. The experimentM results show that the single channel I dB bandwidth of AWG ranges from 2.12nm to 3.06nm, the ROSA responsivity ranges from 0.097 A/W to 0.158A/W, and the 3dB bandwidth is up to 11 GHz. It is promising to be applied in the eight-lane WDM transmission system in data center interconnection. 展开更多
关键词 AWG GHz Receiver Optical Subassembly Based on Silica hybrid Integration Technology for data Center Interconnection The 8 PD
下载PDF
Inference and optimal design on step-stress partially accelerated life test for hybrid system with masked data 被引量:1
5
作者 SHI Xiaolin LU Pu SHI Yimin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期1089-1100,共12页
Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed tha... Under Type-Ⅱ progressively hybrid censoring, this paper discusses statistical inference and optimal design on stepstress partially accelerated life test for hybrid system in presence of masked data. It is assumed that the lifetime of the component in hybrid systems follows independent and identical modified Weibull distributions. The maximum likelihood estimations(MLEs)of the unknown parameters, acceleration factor and reliability indexes are derived by using the Newton-Raphson algorithm. The asymptotic variance-covariance matrix and the approximate confidence intervals are obtained based on normal approximation to the asymptotic distribution of MLEs of model parameters. Moreover,two bootstrap confidence intervals are constructed by using the parametric bootstrap method. The optimal time of changing stress levels is determined under D-optimality and A-optimality criteria.Finally, the Monte Carlo simulation study is carried out to illustrate the proposed procedures. 展开更多
关键词 hybrid system step-stress partially accelerated life test Type-Ⅱ progressively hybrid censored and masked data statistical inference optimal test plan
下载PDF
Mining Hierarchical Decision Rules from Hybrid Data with Categorical and Continuous Valued Attributes
6
作者 MIAO Duo-qian QIAN Jin +1 位作者 LI Wen ZHANG Ze-hua 《浙江海洋学院学报(自然科学版)》 CAS 2010年第5期420-427,共8页
Decision rules mining is an important issue in machine learning and data mining.However,most proposed algorithms mine categorical data at single level,and these rules are not easily understandable and really useful fo... Decision rules mining is an important issue in machine learning and data mining.However,most proposed algorithms mine categorical data at single level,and these rules are not easily understandable and really useful for users.Thus,a new approach to hierarchical decision rules mining is provided in this paper,in which similarity direction measure is introduced to deal with hybrid data.This approach can mine hierarchical decision rules by adjusting similarity measure parameters and the level of concept hierarchy trees. 展开更多
关键词 Similarity relation Attribute reduction Hierarchical decision rules hybrid data
下载PDF
Blockchain-Based Cognitive Computing Model for Data Security on a Cloud Platform 被引量:1
7
作者 Xiangmin Guo Guangjun Liang +1 位作者 Jiayin Liu Xianyi Chen 《Computers, Materials & Continua》 SCIE EI 2023年第12期3305-3323,共19页
Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading... Cloud storage is widely used by large companies to store vast amounts of data and files,offering flexibility,financial savings,and security.However,information shoplifting poses significant threats,potentially leading to poor performance and privacy breaches.Blockchain-based cognitive computing can help protect and maintain information security and privacy in cloud platforms,ensuring businesses can focus on business development.To ensure data security in cloud platforms,this research proposed a blockchain-based Hybridized Data Driven Cognitive Computing(HD2C)model.However,the proposed HD2C framework addresses breaches of the privacy information of mixed participants of the Internet of Things(IoT)in the cloud.HD2C is developed by combining Federated Learning(FL)with a Blockchain consensus algorithm to connect smart contracts with Proof of Authority.The“Data Island”problem can be solved by FL’s emphasis on privacy and lightning-fast processing,while Blockchain provides a decentralized incentive structure that is impervious to poisoning.FL with Blockchain allows quick consensus through smart member selection and verification.The HD2C paradigm significantly improves the computational processing efficiency of intelligent manufacturing.Extensive analysis results derived from IIoT datasets confirm HD2C superiority.When compared to other consensus algorithms,the Blockchain PoA’s foundational cost is significant.The accuracy and memory utilization evaluation results predict the total benefits of the system.In comparison to the values 0.004 and 0.04,the value of 0.4 achieves good accuracy.According to the experiment results,the number of transactions per second has minimal impact on memory requirements.The findings of this study resulted in the development of a brand-new IIoT framework based on blockchain technology. 展开更多
关键词 Blockchain Internet of Things(IoT) blockchain based cognitive computing hybridized data Driven Cognitive Computing(HD2C) Federated Learning(FL) Proof of Authority(PoA)
下载PDF
A Hybrid Spatial Dependence Model Based on Radial Basis Function Neural Networks (RBFNN) and Random Forest (RF)
8
作者 Mamadou Hady Barry Lawrence Nderu Anthony Waititu Gichuhi 《Journal of Data Analysis and Information Processing》 2023年第3期293-309,共17页
The majority of spatial data reveal some degree of spatial dependence. The term “spatial dependence” refers to the tendency for phenomena to be more similar when they occur close together than when they occur far ap... The majority of spatial data reveal some degree of spatial dependence. The term “spatial dependence” refers to the tendency for phenomena to be more similar when they occur close together than when they occur far apart in space. This property is ignored in machine learning (ML) for spatial domains of application. Most classical machine learning algorithms are generally inappropriate unless modified in some way to account for it. In this study, we proposed an approach that aimed to improve a ML model to detect the dependence without incorporating any spatial features in the learning process. To detect this dependence while also improving performance, a hybrid model was used based on two representative algorithms. In addition, cross-validation method was used to make the model stable. Furthermore, global moran’s I and local moran were used to capture the spatial dependence in the residuals. The results show that the HM has significant with a R2 of 99.91% performance compared to RBFNN and RF that have 74.22% and 82.26% as R2 respectively. With lower errors, the HM was able to achieve an average test error of 0.033% and a positive global moran’s of 0.12. We concluded that as the R2 value increases, the models become weaker in terms of capturing the dependence. 展开更多
关键词 Spatial data Spatial Dependence hybrid Model Machine Learning Algorithms
下载PDF
Design and Analysis of Sustainable Green Data Center with Hybrid Energy Sources
9
作者 Akibur Rahaman Kazi Nusrat Noor +2 位作者 Tanjin Adnan Abir Sohel Rana Masum Ali 《Journal of Power and Energy Engineering》 2021年第7期76-88,共13页
<span style="font-family:Verdana;">Develop</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;&qu... <span style="font-family:Verdana;">Develop</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ment</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> of renewable energy (RE) and mitigation of carbon dioxide, as the two largest climate action initiatives are the most challenging factors for new generation green data center (GDC). Reduction of conventional electricity consumption as well as cost of electricity (COE) with preferred quality</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of service (QoS) has been recognized as the interesting research topic in Information and Communication Technology (ICT) sector. Moreover, it becomes challenging to design a large-scale sustainable GDC with standalone RE supply. This paper gives spotlight on hybrid energy supply solution for the GDC to reduce grid electricity usage and minimum net system cost. The proposed framework includes RE source such as solar photovoltaic, wind turbine and non-renewable energy sources as Disel Generator (DG) and Battery. A hybrid optimization model is designed using HOMER software for cost assessment and energy evaluation to validate the effectiveness of the suggested scheme focusing on eco-friendly implication.</span></span></span> 展开更多
关键词 Green data Center Renewable Energy SUSTAINABILITY hybrid Power Supply Power Usage Effectiveness
下载PDF
结合时空关键字的轨迹范围查询混合索引结构
10
作者 孟祥福 李天朔 张霄雁 《计算机科学》 CSCD 北大核心 2024年第S02期599-606,共8页
对于路网上广泛的轨迹数据集,传统结合关键字特征的时空范围查询方法存在存储结构冗余和查询效率低下的问题,同时这些方法忽视了文本特征对优化查询结果个性化方面的潜在影响。为此,提出了一种结合文本特征的时空轨迹索引结构,称为IG-T... 对于路网上广泛的轨迹数据集,传统结合关键字特征的时空范围查询方法存在存储结构冗余和查询效率低下的问题,同时这些方法忽视了文本特征对优化查询结果个性化方面的潜在影响。为此,提出了一种结合文本特征的时空轨迹索引结构,称为IG-Tree。其基本思想是将道路网络图划分为分层子图,并据此构建一个平衡的树结构,其中每个树节点均关联并存储其特定的轨迹数据。此外,设计的查询算法利用与IG-Tree节点相关联的子路网图的文本特征,筛选并提出范围边界处的不相关轨迹,实现高效且精准的文本空间范围查询。这种索引结构不仅有效集成了时间、空间和文本3个维度的信息,而且基于这种结构的查询方法能够支持基于时空关键字的轨迹范围查询,从而极大地满足用户查询的个性化需求。在Porto和LA数据集上的实验证明,IG-Tree索引结构不仅在查询精度上表现出色,而且在响应速度上也具有显著优势,这进一步验证了其处理大规模轨迹数据集时的有效性和实用性。 展开更多
关键词 查询 轨迹数据 范围查询 混合索引结构
下载PDF
数模联动的多特征工件加工能耗预测方法研究
11
作者 张华 马超 +2 位作者 鄢威 朱硕 江志刚 《组合机床与自动化加工技术》 北大核心 2024年第4期66-71,共6页
在实际切削加工过程中材料去除率是不断变化的,现有将其视为恒量的能耗建模方法难以实现能耗准确预测。为了提高切削过程能耗预测精度,提出了一种基于材料去除率的数模联动加工能耗预测方法。首先,基于切削过程刀具与工件的接触关系分... 在实际切削加工过程中材料去除率是不断变化的,现有将其视为恒量的能耗建模方法难以实现能耗准确预测。为了提高切削过程能耗预测精度,提出了一种基于材料去除率的数模联动加工能耗预测方法。首先,基于切削过程刀具与工件的接触关系分析了切入、完全切入和切出阶段材料去除率变化规律,并对相应的加工能耗特性进行了分析;其次,提出了数据驱动的刀具切入,切出阶段加工能耗预测方法,以及模型驱动的完全切入阶段加工能耗预测方法,实现加工过程能耗准确预测;最后,利用实验案例验证了所提模型及方法的有效性,为今后研究能耗预测精度奠定了基础。 展开更多
关键词 数模联动 材料去除率 多特征零件 加工能耗预测
下载PDF
船用承压结构变形场混合数字孪生监测模型方法实现 被引量:1
12
作者 谢红胜 黄子轩 +2 位作者 刘炎 朱嘉明 王泽 《中国舰船研究》 CSCD 北大核心 2024年第S01期52-61,共10页
[目的]旨在为实现船舶的全生命健康监测设计一种面向结构健康监测的混合数字孪生系统。可实时采集及反馈关键舱室结构的变形,从而提升航运的信息化和安全管理能力。[方法]首先,采用奇异值分解法对多组载荷形成的物理场信息进行数据压缩... [目的]旨在为实现船舶的全生命健康监测设计一种面向结构健康监测的混合数字孪生系统。可实时采集及反馈关键舱室结构的变形,从而提升航运的信息化和安全管理能力。[方法]首先,采用奇异值分解法对多组载荷形成的物理场信息进行数据压缩降维得到特定的标准正交基,创建基向量与载荷关系的响应面模型,输出基于实时输入载荷的有限元降阶模型。其次,采用基于地统计学的克里金插值算法,按照特定拓扑结构布点,将实时的传感器数据和降阶模型输出的补充点位数据经由卡尔曼滤波算法进行融合修正,共同计算监测对象的变形情况。最后,通过构建变形监测软硬件系统,实现监测物理特性的采集到可视化的全过程。[结果]该系统在预设的载荷下,硬件采集系统能够稳定进行数据采集,配套的应用程序能够按照预期的要求进行实时可视化采集。[结论]该结构健康混合数字孪生系统满足船舶的健康监测需求,对未来船舶的高度一体化、智能化发展具有一定的参考意义。 展开更多
关键词 混合数字孪生监测模型 克里金算法 数据融合
下载PDF
基于数据驱动的混合式教学质量保障机制的研究——以民办高职院校为例
13
作者 朱敏 《湖北开放职业学院学报》 2024年第14期159-161,共3页
本研究的目的是将基于数据驱动的混合式教学质量保障机制融合到高等院校的教学质量保证体系中,试图对所确定的问题进行更深入的理解,以便提出干预和变革,加强高等院校混合式教学和学习过程,最重要的是,改善高等院校的教学质量和学习体... 本研究的目的是将基于数据驱动的混合式教学质量保障机制融合到高等院校的教学质量保证体系中,试图对所确定的问题进行更深入的理解,以便提出干预和变革,加强高等院校混合式教学和学习过程,最重要的是,改善高等院校的教学质量和学习体验。为了实现这一目标,本研究首先明确基于数据驱动的混合式教学质量保障机制的作用,进而论述基于数据驱动的混合式教学质量保障机制的设计,最终提出基于数据驱动的混合式教学质量保障机制的实现。所做研究与高等教育混合式教学质量增强维度有关,是协助高等院校教务部门加深对混合式教学质量管理及保障的探索,具有一定的参考和借鉴意义。 展开更多
关键词 信息化 混合式教学 数据驱动 教学质量保障机制 民办高职院校
下载PDF
融合物联网技术与混合加密算法的医疗数据信息优化框架设计研究
14
作者 徐澄 李民 东单锋 《微型电脑应用》 2024年第10期186-190,共5页
目前,医疗数据信息系统存在安全性低、共享难度大等问题,对此,提出一种融合物联网技术与混合加密算法的医疗数据信息优化框架,以提升医疗数据的安全。在此基础上,结合物联网的相关技术,对医疗数据采集方法进行设计。基于超级账本搭建完... 目前,医疗数据信息系统存在安全性低、共享难度大等问题,对此,提出一种融合物联网技术与混合加密算法的医疗数据信息优化框架,以提升医疗数据的安全。在此基础上,结合物联网的相关技术,对医疗数据采集方法进行设计。基于超级账本搭建完整的医疗数据信息框架。实验结果显示,高级加密标准(AES)算法的加密速度随着数据量的增大而增大,从而使用户能够根据要求传输任意长度的数据。利用非对称加密(RSA)算法对密码进行10次加密实验,得到了15 ms、94 ms的平均加密效果,系统加密效率较高。研究算法具有较好的工作稳定性,在功能和性能方面能够满足实际的医疗环境需要。 展开更多
关键词 物联网 混合加密算法 医疗数据 优化管理
下载PDF
面向大规模海量数据的数据挖掘隐私保护方法研究 被引量:1
15
作者 杜鹏懿 熊婧 +1 位作者 张来平 李匀祎 《电子产品可靠性与环境试验》 2024年第1期1-7,共7页
物联网环境产生大量数据,数据隐私保护问题已经成为热点研究领域之一。通过阐述物联网大数据的特点和隐私威胁,分析了现有的数据挖掘隐私保护方法的不足,针对性地提供了一种基于混合高斯分布的数据扰动隐私保护方法。该方法通过生成并... 物联网环境产生大量数据,数据隐私保护问题已经成为热点研究领域之一。通过阐述物联网大数据的特点和隐私威胁,分析了现有的数据挖掘隐私保护方法的不足,针对性地提供了一种基于混合高斯分布的数据扰动隐私保护方法。该方法通过生成并公开一组与原始数据独立同分布的新数据的手段来达到对原始数据进行扰动的目的,不仅有效地保护了原始数据隐私,并且保持了原始数据的统计特点,与原始数据上生成的挖掘模型具有相近的准确性。 展开更多
关键词 物联网 数据挖掘 数据扰动 混合高斯模型
下载PDF
蜂窝夹层结构无损检测方法研究综述 被引量:2
16
作者 陈韩青 徐志远 +2 位作者 屈仲毅 曾辉 朱长春 《材料导报》 EI CAS CSCD 北大核心 2024年第10期292-306,共15页
蜂窝夹层结构是一种层合复合材料,具有优异的力学性能,被广泛应用于航空航天、建筑以及汽车制造等领域。由于自身结构及服役工况的复杂性,蜂窝夹层结构容易在制造、服役等阶段产生蒙皮-蜂窝芯界面脱粘、蒙皮分层、夹杂、蜂窝芯格变形、... 蜂窝夹层结构是一种层合复合材料,具有优异的力学性能,被广泛应用于航空航天、建筑以及汽车制造等领域。由于自身结构及服役工况的复杂性,蜂窝夹层结构容易在制造、服役等阶段产生蒙皮-蜂窝芯界面脱粘、蒙皮分层、夹杂、蜂窝芯格变形、芯格塌陷、节点开裂、蜂窝积水等多种形式的缺陷。因此,开展蜂窝夹层结构无损检测方法的研究具有重要意义。本文回顾了国内外文献中出现的针对蜂窝夹层结构的无损检测方法,分析了各种单一检测方法的原理、应用优势及局限性。随后,概述了将多种单一方法复合的检测方法在蜂窝夹层结构缺陷全面检测上的应用,并指出应用智能算法可实现蜂窝夹层结构缺陷的定量和分类识别。最后,对蜂窝夹层结构无损检测的研究和应用趋势进行了简要总结和展望。 展开更多
关键词 蜂窝夹层结构 无损检测 复合检测 数据融合 神经网络
下载PDF
机理-数据混合驱动的气象敏感负荷需求响应潜力评估
17
作者 高攀 秦川 +2 位作者 武思远 王珂 黄奇峰 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期85-92,共8页
为准确评估电网中气象敏感负荷需求响应潜力,提出了一种基于机理-数据驱动方法融合的气象敏感负荷需求响应潜力评估方法。该方法根据数据驱动的双分支神经网络模型估算电网层级的气象敏感负荷功率,基于热力学等值模型建立气象敏感负荷... 为准确评估电网中气象敏感负荷需求响应潜力,提出了一种基于机理-数据驱动方法融合的气象敏感负荷需求响应潜力评估方法。该方法根据数据驱动的双分支神经网络模型估算电网层级的气象敏感负荷功率,基于热力学等值模型建立气象敏感负荷的机理聚合模型,并以聚合功率与估算功率误差最小为目标,采用控制变量法和粒子群优化算法优化确定机理聚合模型的等效参数(温控负荷设备数量、温度设定值等),同时综合考虑用户舒适度与意愿度等因素评估气象敏感负荷需求响应潜力。实例验证结果表明,该方法估算的气象敏感负荷功率与温度具有显著相关性,获得的机理聚合模型等效参数及需求响应潜力与实际情况相符且合理。 展开更多
关键词 气象敏感负荷 机理-数据混合驱动 需求响应潜力 热力学等值模型 聚合建模
下载PDF
基于Hybrid EnSRF-En3DVar的雷达资料同化研究 被引量:11
18
作者 闵锦忠 刘盛玉 +1 位作者 毕坤 杜宁珠 《大气科学学报》 CSCD 北大核心 2015年第2期213-221,共9页
基于WRF模式构建了Hybrid En SRF-En3DVar同化系统,该系统使用En SRF方案直接更新集合扰动。利用构建的同化系统针对台风"桑美"分别进行集合协方差权重敏感性试验和同化雷达不同观测资料的敏感性试验。集合协方差权重敏感性... 基于WRF模式构建了Hybrid En SRF-En3DVar同化系统,该系统使用En SRF方案直接更新集合扰动。利用构建的同化系统针对台风"桑美"分别进行集合协方差权重敏感性试验和同化雷达不同观测资料的敏感性试验。集合协方差权重敏感性试验发现:当集合协方差权重分别为0.25、0.5和0.75时,同化效果优于3DVar试验,其中0.75的集合协方差权重试验得到了分析场的最优估计;当集合协方差权重为1.0时,分析场最差。同化雷达不同观测资料的敏感性试验表明,联合同化雷达径向风及反射率能有效改善大气湿度场和风场,但对风场的改善效果不如仅同化雷达径向风好。将En SRF集合扰动更新方案与扰动观测方案综合分析发现,扰动观测方案集合离散度较小,计算代价大,En SRF方案优于扰动观测方案。 展开更多
关键词 资料同化 hybrid EnSRF-En3DVar 多普勒雷达 台风
下载PDF
基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估 被引量:1
19
作者 陆旭 张理寅 +2 位作者 李更丰 别朝红 段超 《电力系统自动化》 EI CSCD 北大核心 2024年第9期107-119,共13页
针对现有数据驱动的电力系统暂态评估方法依赖大规模数据集且可解释性不足的问题,文中将物理知识嵌入传统数据驱动方法,提出一种基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估方法。该方法考虑大规模风电并网的电力系统,将电力... 针对现有数据驱动的电力系统暂态评估方法依赖大规模数据集且可解释性不足的问题,文中将物理知识嵌入传统数据驱动方法,提出一种基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估方法。该方法考虑大规模风电并网的电力系统,将电力系统暂态稳定物理方程内嵌至神经网络损失函数,通过神经网络直接逼近物理过程,使输出结果满足物理规律,提高暂态稳定评估的可靠性与可解释性。通过数据与知识双驱动,所提方法不依赖大规模训练数据集,依然具有较好的鲁棒性与泛化能力。此外,所提方法通过卷积神经网络进行特征提取与降维,解决拓扑数据无法直接作为神经网络输入的难题。在含风机的IEEE 9节点和IEEE 39节点测试系统上的实验结果表明,所提方法在准确率、计算效率、泛化能力等方面相较现有方法有显著提升。 展开更多
关键词 内嵌物理知识卷积神经网络 知识-数据混合驱动 功角 暂态稳定性 机器学习 可解释性
下载PDF
基于混合密码技术的一种大数据加密技术研究 被引量:2
20
作者 董艳燕 《湖北师范大学学报(自然科学版)》 2024年第2期52-55,共4页
大数据背景下的数据安全比普通数据安全更加重要而且复杂,通常采用数据加密技术保证数据在存储和传输过程中的安全。介绍一种特殊的混合加密技术,对大数据背景下的数据提取某一关键字的数据域,对该数据域的数据进行加密,提高大数据背景... 大数据背景下的数据安全比普通数据安全更加重要而且复杂,通常采用数据加密技术保证数据在存储和传输过程中的安全。介绍一种特殊的混合加密技术,对大数据背景下的数据提取某一关键字的数据域,对该数据域的数据进行加密,提高大数据背景下的数据加密速度和效率。 展开更多
关键词 大数据背景 混合加密技术 有效数据 AES算法 ECC算法
下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部