Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese...Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.展开更多
With the deepening informationization of Resources & Environment Remote Sensing geological survey conducted,some potential problems and deficiency are:(1) shortage of unified-planed running environment;(2) inconsi...With the deepening informationization of Resources & Environment Remote Sensing geological survey conducted,some potential problems and deficiency are:(1) shortage of unified-planed running environment;(2) inconsistent methods of data integration;and(3) disadvantages of different performing ways of data integration.This paper solves the above problems through overall planning and design,constructs unified running environment, consistent methods of data integration and system structure in order to advance the informationization展开更多
An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid in...An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid integration technology. Multimode output waveguides in the silica AWG with 2% refractive index difference are used to obtain fiat-top spectra. The output waveguide facet is polished to 45° bevel to change the light propagation direction into the mesa-type PIN PD, which simplifies the packaging process. The experimentM results show that the single channel I dB bandwidth of AWG ranges from 2.12nm to 3.06nm, the ROSA responsivity ranges from 0.097 A/W to 0.158A/W, and the 3dB bandwidth is up to 11 GHz. It is promising to be applied in the eight-lane WDM transmission system in data center interconnection.展开更多
Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases ...Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common.Recent advances in the Internet of Things(IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition,gaining significant attention in personalized healthcare.This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring.Relevant papers were extracted and analyzed using a systematic numerical review method,covering various aspects such as sports monitoring,disease detection,patient monitoring,and medical diagnosis.The review highlights the transformative impact of IoTenabled wearable devices in healthcare,facilitating real-time monitoring of vital signs,including blood pressure,temperature,oxygen levels,and heart rate.Results from the reviewed papers demonstrate high accuracy and efficiency in predicting health conditions,improving sports performance,enhancing patient care,and diagnosing diseases.The integration of IoT in wearable healthcare devices enables remote patient monitoring,personalized care,and efficient data transmission,ultimately transcending traditional boundaries of healthcare and leading to better patient outcomes.展开更多
Probabilistic seismic hazard assessment (PSHA) takes into account as much data as possible for defining the initial seismic source zone model. In response to this, an algorithm has been developed for integration of ge...Probabilistic seismic hazard assessment (PSHA) takes into account as much data as possible for defining the initial seismic source zone model. In response to this, an algorithm has been developed for integration of geological, geophysical and seismological data through a spatial index showing the presence or absence of a potential seismic source feature in the input data. The spatial matching index (SMI) is calculated to define the coincidence of independent data showing any indications for existence of a fault structure. It is applied for hazard assessment of Bulgaria through quantification of the seismic potential of 416 square blocks, 20 × 20 km in size covering the entire territory of Bulgaria and extended by 20 km outside of the country borders. All operations are carried out in GIS environment using its capabilities to work with different types of georeferenced spatial data. Results show that the highest seismic potential (largest SMI) is observed in 56 block elements (13% of the territory) clearly delineating cores of the source zones. Partial match is registered in 98 block elements when one of the features is missing. Not any evidence for earthquake occurrence is predicted by our calculation in 117 elements, comprising 28% of the examined area. The quantitative parameter for spatial data integration which is obtained in the present research may be used to analyze information regardless of its type and purpose.展开更多
In allusion to the difficulty of integrating data with different models in integrating spatial information, the characteristics of raster structure, vector structure and mixed model were analyzed, and a hierarchical v...In allusion to the difficulty of integrating data with different models in integrating spatial information, the characteristics of raster structure, vector structure and mixed model were analyzed, and a hierarchical vector-raster integrative full feature model was put forward by integrating the advantage of vector and raster model and using the object-oriented method. The data structures of the four basic features, i.e. point, line, surface and solid, were described. An application was analyzed and described, and the characteristics of this model were described. In this model, all objects in the real world are divided into and described as features with hierarchy, and all the data are organized in vector. This model can describe data based on feature, field, network and other models, and avoid the disadvantage of inability to integrate data based on different models and perform spatial analysis on them in spatial information integration.展开更多
Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data...Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data models are studied,and the characteristics of building information modeling standards(IFC),city geographic modeling language(CityGML),indoor modeling language(IndoorGML),and other models are compared and analyzed.CityGML and IndoorGML models face challenges in satisfying diverse application scenarios and requirements due to limitations in their expression capabilities.It is proposed to combine the semantic information of the model objects to effectively partition and organize the indoor and outdoor spatial 3D model data and to construct the indoor and outdoor data organization mechanism of“chunk-layer-subobject-entrances-area-detail object.”This method is verified by proposing a 3D data organization method for indoor and outdoor space and constructing a 3D visualization system based on it.展开更多
A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damag...A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damages. Integral mission scenarios in Distributed Scenario Language (DSL) can be injected from any point, runtime covering & grasping the whole system or its parts, setting operational infrastructures, and orienting local and global behavior in the way needed. Many operational scenarios can be simultaneously injected into this spatial machine from different points, cooperating or competing over the shared distributed knowledge as overlapping fields of solutions. Distributed DSL interpreter organization and benefits of using this technology for integrated air and missile defense are discussed along with programming examples in this and other fields.展开更多
GeoStar is the registered trademark of GIS software made by WTUSM in China.By means of the GeoStar,multi_scale images,DEMs,graphics and attributes integrated in very large seamless databases can be created,and the mul...GeoStar is the registered trademark of GIS software made by WTUSM in China.By means of the GeoStar,multi_scale images,DEMs,graphics and attributes integrated in very large seamless databases can be created,and the multi_dimensional dynamic visualization and information extraction are also available.This paper describes the fundamental characteristics of such huge integrated databases,for instance,the data models,database structures and the spatial index strategies.At last,the typical applications of GeoStar for a few pilot projects like the Shanghai CyberCity and the Guangdong provincial spatial data infrastructure (SDI) are illustrated and several concluding remarks are stressed.展开更多
The integration of remote sensing (RS) with geographical information system (GIS) is a hotspot in geographical information science.A good database structure is important to the integration of RS with GIS,which should ...The integration of remote sensing (RS) with geographical information system (GIS) is a hotspot in geographical information science.A good database structure is important to the integration of RS with GIS,which should be beneficial to the complete integration of RS with GIS,able to deal with the disagreement between the resolution of remote sensing images and the precision of GIS data,and also helpful to the knowledge discovery and exploitation.In this paper,the database structure storing the spatial data based on semantic network is presented.This database structure has several advantages.Firstly,the spatial data is stored as raster data with space index,so the image processing can be done directly on the GIS data that is stored hierarchically according to the distinguishing precision.Secondly,the simple objects are aggregated into complex ones.Thirdly,because we use the indexing tree to depict the relationship of aggregation and the indexing pictures expressed by 2_D strings to describe the topology structure of the objects,the concepts of surrounding and region are expressed clearly and the semantic content of the landscape can be illustrated well.All the factors that affect the recognition of the objects are depicted in the factor space,which provides a uniform mathematical frame for the fusion of the semantic and non_semantic information.Lastly,the object node,knowledge node and the indexing node are integrated into one node.This feature enhances the ability of system in knowledge expressing,intelligent inference and association.The application shows that this database structure can benefit the interpretation of remote sensing image with the information of GIS.展开更多
文摘Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.
文摘With the deepening informationization of Resources & Environment Remote Sensing geological survey conducted,some potential problems and deficiency are:(1) shortage of unified-planed running environment;(2) inconsistent methods of data integration;and(3) disadvantages of different performing ways of data integration.This paper solves the above problems through overall planning and design,constructs unified running environment, consistent methods of data integration and system structure in order to advance the informationization
基金Supported by the National High Technology Research and Development Program of China under Grant No 2015AA016902the National Natural Science Foundation of China under Grant Nos 61435013 and 61405188the K.C.Wong Education Foundation
文摘An 8×10 GHz receiver optical sub-assembly (ROSA) consisting of an 8-channel arrayed waveguide grating (AWG) and an 8-channel PIN photodetector (PD) array is designed and fabricated based on silica hybrid integration technology. Multimode output waveguides in the silica AWG with 2% refractive index difference are used to obtain fiat-top spectra. The output waveguide facet is polished to 45° bevel to change the light propagation direction into the mesa-type PIN PD, which simplifies the packaging process. The experimentM results show that the single channel I dB bandwidth of AWG ranges from 2.12nm to 3.06nm, the ROSA responsivity ranges from 0.097 A/W to 0.158A/W, and the 3dB bandwidth is up to 11 GHz. It is promising to be applied in the eight-lane WDM transmission system in data center interconnection.
文摘Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care,which is essential for independent living,especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common.Recent advances in the Internet of Things(IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition,gaining significant attention in personalized healthcare.This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring.Relevant papers were extracted and analyzed using a systematic numerical review method,covering various aspects such as sports monitoring,disease detection,patient monitoring,and medical diagnosis.The review highlights the transformative impact of IoTenabled wearable devices in healthcare,facilitating real-time monitoring of vital signs,including blood pressure,temperature,oxygen levels,and heart rate.Results from the reviewed papers demonstrate high accuracy and efficiency in predicting health conditions,improving sports performance,enhancing patient care,and diagnosing diseases.The integration of IoT in wearable healthcare devices enables remote patient monitoring,personalized care,and efficient data transmission,ultimately transcending traditional boundaries of healthcare and leading to better patient outcomes.
文摘Probabilistic seismic hazard assessment (PSHA) takes into account as much data as possible for defining the initial seismic source zone model. In response to this, an algorithm has been developed for integration of geological, geophysical and seismological data through a spatial index showing the presence or absence of a potential seismic source feature in the input data. The spatial matching index (SMI) is calculated to define the coincidence of independent data showing any indications for existence of a fault structure. It is applied for hazard assessment of Bulgaria through quantification of the seismic potential of 416 square blocks, 20 × 20 km in size covering the entire territory of Bulgaria and extended by 20 km outside of the country borders. All operations are carried out in GIS environment using its capabilities to work with different types of georeferenced spatial data. Results show that the highest seismic potential (largest SMI) is observed in 56 block elements (13% of the territory) clearly delineating cores of the source zones. Partial match is registered in 98 block elements when one of the features is missing. Not any evidence for earthquake occurrence is predicted by our calculation in 117 elements, comprising 28% of the examined area. The quantitative parameter for spatial data integration which is obtained in the present research may be used to analyze information regardless of its type and purpose.
基金Project (40473029) supported bythe National Natural Science Foundation of China project (04JJ3046) supported bytheNatural Science Foundation of Hunan Province , China
文摘In allusion to the difficulty of integrating data with different models in integrating spatial information, the characteristics of raster structure, vector structure and mixed model were analyzed, and a hierarchical vector-raster integrative full feature model was put forward by integrating the advantage of vector and raster model and using the object-oriented method. The data structures of the four basic features, i.e. point, line, surface and solid, were described. An application was analyzed and described, and the characteristics of this model were described. In this model, all objects in the real world are divided into and described as features with hierarchy, and all the data are organized in vector. This model can describe data based on feature, field, network and other models, and avoid the disadvantage of inability to integrate data based on different models and perform spatial analysis on them in spatial information integration.
文摘Building model data organization is often programmed to solve a specific problem,resulting in the inability to organize indoor and outdoor 3D scenes in an integrated manner.In this paper,existing building spatial data models are studied,and the characteristics of building information modeling standards(IFC),city geographic modeling language(CityGML),indoor modeling language(IndoorGML),and other models are compared and analyzed.CityGML and IndoorGML models face challenges in satisfying diverse application scenarios and requirements due to limitations in their expression capabilities.It is proposed to combine the semantic information of the model objects to effectively partition and organize the indoor and outdoor spatial 3D model data and to construct the indoor and outdoor data organization mechanism of“chunk-layer-subobject-entrances-area-detail object.”This method is verified by proposing a 3D data organization method for indoor and outdoor space and constructing a 3D visualization system based on it.
文摘A high-level technology is revealed that can effectively convert any distributed system into a globally programmable machine capable of operating without central resources and self-recovering from indiscriminate damages. Integral mission scenarios in Distributed Scenario Language (DSL) can be injected from any point, runtime covering & grasping the whole system or its parts, setting operational infrastructures, and orienting local and global behavior in the way needed. Many operational scenarios can be simultaneously injected into this spatial machine from different points, cooperating or competing over the shared distributed knowledge as overlapping fields of solutions. Distributed DSL interpreter organization and benefits of using this technology for integrated air and missile defense are discussed along with programming examples in this and other fields.
文摘GeoStar is the registered trademark of GIS software made by WTUSM in China.By means of the GeoStar,multi_scale images,DEMs,graphics and attributes integrated in very large seamless databases can be created,and the multi_dimensional dynamic visualization and information extraction are also available.This paper describes the fundamental characteristics of such huge integrated databases,for instance,the data models,database structures and the spatial index strategies.At last,the typical applications of GeoStar for a few pilot projects like the Shanghai CyberCity and the Guangdong provincial spatial data infrastructure (SDI) are illustrated and several concluding remarks are stressed.
文摘The integration of remote sensing (RS) with geographical information system (GIS) is a hotspot in geographical information science.A good database structure is important to the integration of RS with GIS,which should be beneficial to the complete integration of RS with GIS,able to deal with the disagreement between the resolution of remote sensing images and the precision of GIS data,and also helpful to the knowledge discovery and exploitation.In this paper,the database structure storing the spatial data based on semantic network is presented.This database structure has several advantages.Firstly,the spatial data is stored as raster data with space index,so the image processing can be done directly on the GIS data that is stored hierarchically according to the distinguishing precision.Secondly,the simple objects are aggregated into complex ones.Thirdly,because we use the indexing tree to depict the relationship of aggregation and the indexing pictures expressed by 2_D strings to describe the topology structure of the objects,the concepts of surrounding and region are expressed clearly and the semantic content of the landscape can be illustrated well.All the factors that affect the recognition of the objects are depicted in the factor space,which provides a uniform mathematical frame for the fusion of the semantic and non_semantic information.Lastly,the object node,knowledge node and the indexing node are integrated into one node.This feature enhances the ability of system in knowledge expressing,intelligent inference and association.The application shows that this database structure can benefit the interpretation of remote sensing image with the information of GIS.