Internet of Things(IoT)is becoming popular nowadays for collecting and sharing the data from the nodes and among the nodes using internet links.Particularly,some of the nodes in IoT are mobile and dynamic in nature.He...Internet of Things(IoT)is becoming popular nowadays for collecting and sharing the data from the nodes and among the nodes using internet links.Particularly,some of the nodes in IoT are mobile and dynamic in nature.Hence maintaining the link among the nodes,efficient bandwidth of the links among the mobile nodes with increased life time is a big challenge in IoT as it integrates mobile nodes with static nodes for data processing.In such networks,many routing-problems arise due to difficulties in energy and bandwidth based quality of service.Due to the mobility and finite nature of the nodes,transmission links between intermediary nodes may fail frequently,thus affecting the routing-performance of the network and the accessibility of the nodes.The existing protocols do not focus on the transmission links and energy,bandwidth and link stability of the nodes,but node links are significant factors for enhancing the quality of the routing.Link stability helps us to define whether the node is within or out of a coverage range.This paper proposed an Optimal Energy and bandwidth based Link Stability Routing(OEBLS)algorithm,to improve the link stable route with minimized error rate and throughput.In this paper,the optimal route from the source to the sink is determined based on the energy and bandwidth,link stability value.Among the existing routes,the sink node will choose the optimal route which is having less link stability value.Highly stable link is determined by evaluating link stability value using distance and velocity.Residual-energy of the node is estimated using the current energy and the consumed energy.Consumed energy is estimated using transmitted power and the received power.Available bandwidth in the link is estimated using the idle time and channel capacity with the consideration of probability of collision.展开更多
Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data ...Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data and energy through radio frequency signals.State-of-the-art researches mostly focus on theoretical aspects.By contrast,we provide a complete design and implementation of a fully functioning DEIN system with the support of an unmanned aerial vehicle(UAV).The UAV can be dispatched to areas of interest to remotely recharge batteryless terminals,while collecting essential information from them.Then,the UAV uploads the information to remote base stations.Our system verifies the feasibility of the DEIN in practical applications.展开更多
With the exponential developments of wireless networking and inexpensive Internet of Things(IoT),a wide range of applications has been designed to attain enhanced services.Due to the limited energy capacity of IoT dev...With the exponential developments of wireless networking and inexpensive Internet of Things(IoT),a wide range of applications has been designed to attain enhanced services.Due to the limited energy capacity of IoT devices,energy-aware clustering techniques can be highly preferable.At the same time,artificial intelligence(AI)techniques can be applied to perform appropriate disease diagnostic processes.With this motivation,this study designs a novel squirrel search algorithm-based energy-aware clustering with a medical data classification(SSAC-MDC)model in an IoT environment.The goal of the SSAC-MDC technique is to attain maximum energy efficiency and disease diagnosis in the IoT environment.The proposed SSAC-MDC technique involves the design of the squirrel search algorithm-based clustering(SSAC)technique to choose the proper set of cluster heads(CHs)and construct clusters.Besides,the medical data classification process involves three different subprocesses namely pre-processing,autoencoder(AE)based classification,and improved beetle antenna search(IBAS)based parameter tuning.The design of the SSAC technique and IBAS based parameter optimization processes show the novelty of the work.For show-casing the improved performance of the SSAC-MDC technique,a series of experiments were performed and the comparative results highlighted the supremacy of the SSAC-MDC technique over the recent methods.展开更多
Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption i...Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy costs.This paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research process.The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data centers.These sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for analysis.The data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center environment.Through the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT sensors.The model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power costs.Furthermore,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and AlexNet.The NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark algorithms.These findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive capabilities of cloud computing systems.The IoT plays a critical role in driving these advancements by providing real-time data insights into the operational aspects of data centers.展开更多
The Internet of Things(IoT)is currently reflected in the increase in the number of connected objects,that is,devices with their own identity and computing and communication capacities.IoT is recognized as one of the m...The Internet of Things(IoT)is currently reflected in the increase in the number of connected objects,that is,devices with their own identity and computing and communication capacities.IoT is recognized as one of the most critical areas for future technologies,gaining worldwide attention.It applies to many areas,where it has achieved success,such as healthcare,where a patient is monitored using nodes and lightweight sensors.However,the powerful functions of IoT in the medical field are based on communication,analysis,processing,and management of data autonomously without any manual intervention,which presents many difficulties,such as energy consumption.However,these issues significantly slow down the development and rapid deployment of this technology.The main causes of wasted energy from connected objects include collisions that occur when two or more nodes send data simultaneously and the leading cause of data retransmission that occurs when a collision occurs or when data are not received correctly due to channel fading.The distance between nodes is one of the factors influencing energy consumption.In this article,we have proposed direct communication between nodes to avoid collision domains,which will help reduce data retransmission.The results show that the distribution can ensure the performance of the system under general conditions compared to the centralization and to the existing works.展开更多
The knowledge garnered in environmental science takes a crucial part in informing decision-making in various fields,including agriculture, transportation, energy, public health and safety, and more. Understanding the ...The knowledge garnered in environmental science takes a crucial part in informing decision-making in various fields,including agriculture, transportation, energy, public health and safety, and more. Understanding the basic processes in each of these fields relies greatly on progress being made in conceptual, observational and technological approaches. However,existing instruments for environmental observations are often limited as a result of technical and practical constraints. Current technologies, including remote sensing systems and ground-level measuring means, may suffer from obstacles such as low spatial representativity or a lack of precision when measuring near ground-level. These constraints often limit the ability to carry out extensive meteorological observations and, as a result, the capacity to deepen the existing understanding of atmospheric phenomena and processes. Multi-system informatics and sensing technology have become increasingly distributed as they are embedded into our environment. As they become more widely deployed, these technologies create unprecedented data streams with extraordinary levels of coverage and immediacy, providing a growing opportunity to complement traditional observation techniques using the large volumes of data created. Commercial microwave links that comprise the data transfer infrastructure of cellular communication networks are an example of these types of systems. This viewpoint letter briefly reviews various works on the subject and presents aspects concerning the added value that may be obtained as a result of the integration of these new means, which are becoming available for the first time in this era, for studying and monitoring atmospheric phenomena.展开更多
文摘Internet of Things(IoT)is becoming popular nowadays for collecting and sharing the data from the nodes and among the nodes using internet links.Particularly,some of the nodes in IoT are mobile and dynamic in nature.Hence maintaining the link among the nodes,efficient bandwidth of the links among the mobile nodes with increased life time is a big challenge in IoT as it integrates mobile nodes with static nodes for data processing.In such networks,many routing-problems arise due to difficulties in energy and bandwidth based quality of service.Due to the mobility and finite nature of the nodes,transmission links between intermediary nodes may fail frequently,thus affecting the routing-performance of the network and the accessibility of the nodes.The existing protocols do not focus on the transmission links and energy,bandwidth and link stability of the nodes,but node links are significant factors for enhancing the quality of the routing.Link stability helps us to define whether the node is within or out of a coverage range.This paper proposed an Optimal Energy and bandwidth based Link Stability Routing(OEBLS)algorithm,to improve the link stable route with minimized error rate and throughput.In this paper,the optimal route from the source to the sink is determined based on the energy and bandwidth,link stability value.Among the existing routes,the sink node will choose the optimal route which is having less link stability value.Highly stable link is determined by evaluating link stability value using distance and velocity.Residual-energy of the node is estimated using the current energy and the consumed energy.Consumed energy is estimated using transmitted power and the received power.Available bandwidth in the link is estimated using the idle time and channel capacity with the consideration of probability of collision.
基金partly funded by Natural Science Foundation of China(No.61971102 and 62132004)Sichuan Science and Technology Program(No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2021D003)。
文摘Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data and energy through radio frequency signals.State-of-the-art researches mostly focus on theoretical aspects.By contrast,we provide a complete design and implementation of a fully functioning DEIN system with the support of an unmanned aerial vehicle(UAV).The UAV can be dispatched to areas of interest to remotely recharge batteryless terminals,while collecting essential information from them.Then,the UAV uploads the information to remote base stations.Our system verifies the feasibility of the DEIN in practical applications.
文摘With the exponential developments of wireless networking and inexpensive Internet of Things(IoT),a wide range of applications has been designed to attain enhanced services.Due to the limited energy capacity of IoT devices,energy-aware clustering techniques can be highly preferable.At the same time,artificial intelligence(AI)techniques can be applied to perform appropriate disease diagnostic processes.With this motivation,this study designs a novel squirrel search algorithm-based energy-aware clustering with a medical data classification(SSAC-MDC)model in an IoT environment.The goal of the SSAC-MDC technique is to attain maximum energy efficiency and disease diagnosis in the IoT environment.The proposed SSAC-MDC technique involves the design of the squirrel search algorithm-based clustering(SSAC)technique to choose the proper set of cluster heads(CHs)and construct clusters.Besides,the medical data classification process involves three different subprocesses namely pre-processing,autoencoder(AE)based classification,and improved beetle antenna search(IBAS)based parameter tuning.The design of the SSAC technique and IBAS based parameter optimization processes show the novelty of the work.For show-casing the improved performance of the SSAC-MDC technique,a series of experiments were performed and the comparative results highlighted the supremacy of the SSAC-MDC technique over the recent methods.
基金The authors extend their appreciation to Prince Sattam bin Abdulaziz University for funding this research work through the Project Number(PSAU/2023/01/27268).
文摘Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer processes.However,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy costs.This paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research process.The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data centers.These sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for analysis.The data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center environment.Through the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT sensors.The model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power costs.Furthermore,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and AlexNet.The NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark algorithms.These findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive capabilities of cloud computing systems.The IoT plays a critical role in driving these advancements by providing real-time data insights into the operational aspects of data centers.
文摘The Internet of Things(IoT)is currently reflected in the increase in the number of connected objects,that is,devices with their own identity and computing and communication capacities.IoT is recognized as one of the most critical areas for future technologies,gaining worldwide attention.It applies to many areas,where it has achieved success,such as healthcare,where a patient is monitored using nodes and lightweight sensors.However,the powerful functions of IoT in the medical field are based on communication,analysis,processing,and management of data autonomously without any manual intervention,which presents many difficulties,such as energy consumption.However,these issues significantly slow down the development and rapid deployment of this technology.The main causes of wasted energy from connected objects include collisions that occur when two or more nodes send data simultaneously and the leading cause of data retransmission that occurs when a collision occurs or when data are not received correctly due to channel fading.The distance between nodes is one of the factors influencing energy consumption.In this article,we have proposed direct communication between nodes to avoid collision domains,which will help reduce data retransmission.The results show that the distribution can ensure the performance of the system under general conditions compared to the centralization and to the existing works.
文摘The knowledge garnered in environmental science takes a crucial part in informing decision-making in various fields,including agriculture, transportation, energy, public health and safety, and more. Understanding the basic processes in each of these fields relies greatly on progress being made in conceptual, observational and technological approaches. However,existing instruments for environmental observations are often limited as a result of technical and practical constraints. Current technologies, including remote sensing systems and ground-level measuring means, may suffer from obstacles such as low spatial representativity or a lack of precision when measuring near ground-level. These constraints often limit the ability to carry out extensive meteorological observations and, as a result, the capacity to deepen the existing understanding of atmospheric phenomena and processes. Multi-system informatics and sensing technology have become increasingly distributed as they are embedded into our environment. As they become more widely deployed, these technologies create unprecedented data streams with extraordinary levels of coverage and immediacy, providing a growing opportunity to complement traditional observation techniques using the large volumes of data created. Commercial microwave links that comprise the data transfer infrastructure of cellular communication networks are an example of these types of systems. This viewpoint letter briefly reviews various works on the subject and presents aspects concerning the added value that may be obtained as a result of the integration of these new means, which are becoming available for the first time in this era, for studying and monitoring atmospheric phenomena.