Data-mining techniques have been developed to turn data into useful task-oriented knowledge. Most algorithms for mining association rules identify relationships among transactions using binary values and find rules at...Data-mining techniques have been developed to turn data into useful task-oriented knowledge. Most algorithms for mining association rules identify relationships among transactions using binary values and find rules at a single-concept level. Extracting multilevel association rules in transaction databases is most commonly used in data mining. This paper proposes a multilevel fuzzy association rule mining model for extraction of implicit knowledge which stored as quantitative values in transactions. For this reason it uses different support value at each level as well as different membership function for each item. By integrating fuzzy-set concepts, data-mining technologies and multiple-level taxonomy, our method finds fuzzy association rules from transaction data sets. This approach adopts a top-down progressively deepening approach to derive large itemsets and also incorporates fuzzy boundaries instead of sharp boundary intervals. Comparing our method with previous ones in simulation shows that the proposed method maintains higher precision, the mined rules are closer to reality, and it gives ability to mine association rules at different levels based on the user’s tendency as well.展开更多
Quantitative attributes are partitioned into several fuzzy sets by using fuzzy c-means algorithm.Fuzzy c-means algorithm can embody the actual distribution of the data,and fuzzy sets can soften the partition boundary....Quantitative attributes are partitioned into several fuzzy sets by using fuzzy c-means algorithm.Fuzzy c-means algorithm can embody the actual distribution of the data,and fuzzy sets can soften the partition boundary.Then,we improve the search technology of apriori algorithm and present the algorithm for mining fuzzy association rules.As the database size becomes larger and larger,a better way is to mine fuzzy association rules in parallel.In the parallel mining algorithm,quantitative attributes are partitioned into several fuzzy sets by using parallel fuzzy c-means algorithm.Boolean parallel algorithm is improved to discover frequent fuzzy attribute set,and the fuzzy association rules with at least a minimum confidence are generated on all processors.The experiment results implemented on the distributed linked PC/workstation show that the parallel mining algorithm has fine scaleup,sizeup and speedup.Last,we discuss the application of fuzzy association rules in the classification.The example shows that the accuracy of classification systems of the fuzzy association rules is better than that of the two popular classification methods:C4.5 and CBA.展开更多
The amount of data for decision making has increased tremendously in the age of the digital economy. Decision makers who fail to proficiently manipulate the data produced may make incorrect decisions and therefore har...The amount of data for decision making has increased tremendously in the age of the digital economy. Decision makers who fail to proficiently manipulate the data produced may make incorrect decisions and therefore harm their business. Thus, the task of extracting and classifying the useful information efficiently and effectively from huge amounts of computational data is of special importance. In this paper, we consider that the attributes of data could be both crisp and fuzzy. By examining the suitable partial data, segments with different classes are formed, then a multithreaded computation is performed to generate crisp rules (if possible), and finally, the fuzzy partition technique is employed to deal with the fuzzy attributes for classification. The rules generated in classifying the overall data can be used to gain more knowledge from the data collected.展开更多
多尺度理论已被引入到数据挖掘领域中,但目前多尺度数据挖掘的研究并不深入,缺乏普适性理论与方法。针对上述问题,研究了普适的多尺度数据挖掘理论,提出了尺度上推关联规则挖掘算法。首先基于概念分层理论给出了数据尺度划分和数据尺度...多尺度理论已被引入到数据挖掘领域中,但目前多尺度数据挖掘的研究并不深入,缺乏普适性理论与方法。针对上述问题,研究了普适的多尺度数据挖掘理论,提出了尺度上推关联规则挖掘算法。首先基于概念分层理论给出了数据尺度划分和数据尺度的定义;然后根据多尺度理论的研究重点阐明了多尺度数据挖掘的实质及研究核心;最后在多尺度数据理论研究的基础上提出了尺度上推关联规则挖掘算法SU-ARMA(scaling-up association rules mining algorithm)。该算法利用采样理论和Jaccard相似性系数对数据集挖掘结果中的频繁项集进行处理,实现了多尺度数据间知识的向上推导。利用人造数据集和H省全员人口真实数据集对算法进行了实验和分析,实验结果表明算法具有较高的覆盖率、精确度和较低的支持度估计误差,是可行且有效的。展开更多
文摘Data-mining techniques have been developed to turn data into useful task-oriented knowledge. Most algorithms for mining association rules identify relationships among transactions using binary values and find rules at a single-concept level. Extracting multilevel association rules in transaction databases is most commonly used in data mining. This paper proposes a multilevel fuzzy association rule mining model for extraction of implicit knowledge which stored as quantitative values in transactions. For this reason it uses different support value at each level as well as different membership function for each item. By integrating fuzzy-set concepts, data-mining technologies and multiple-level taxonomy, our method finds fuzzy association rules from transaction data sets. This approach adopts a top-down progressively deepening approach to derive large itemsets and also incorporates fuzzy boundaries instead of sharp boundary intervals. Comparing our method with previous ones in simulation shows that the proposed method maintains higher precision, the mined rules are closer to reality, and it gives ability to mine association rules at different levels based on the user’s tendency as well.
基金supported by the National Key Basic Research Program 973(2002CB312000)National Natural Science Funds for Distinguished Young Scholar(60425206)Advanced Armament Research Project(51406020105JB8103).
文摘Quantitative attributes are partitioned into several fuzzy sets by using fuzzy c-means algorithm.Fuzzy c-means algorithm can embody the actual distribution of the data,and fuzzy sets can soften the partition boundary.Then,we improve the search technology of apriori algorithm and present the algorithm for mining fuzzy association rules.As the database size becomes larger and larger,a better way is to mine fuzzy association rules in parallel.In the parallel mining algorithm,quantitative attributes are partitioned into several fuzzy sets by using parallel fuzzy c-means algorithm.Boolean parallel algorithm is improved to discover frequent fuzzy attribute set,and the fuzzy association rules with at least a minimum confidence are generated on all processors.The experiment results implemented on the distributed linked PC/workstation show that the parallel mining algorithm has fine scaleup,sizeup and speedup.Last,we discuss the application of fuzzy association rules in the classification.The example shows that the accuracy of classification systems of the fuzzy association rules is better than that of the two popular classification methods:C4.5 and CBA.
文摘The amount of data for decision making has increased tremendously in the age of the digital economy. Decision makers who fail to proficiently manipulate the data produced may make incorrect decisions and therefore harm their business. Thus, the task of extracting and classifying the useful information efficiently and effectively from huge amounts of computational data is of special importance. In this paper, we consider that the attributes of data could be both crisp and fuzzy. By examining the suitable partial data, segments with different classes are formed, then a multithreaded computation is performed to generate crisp rules (if possible), and finally, the fuzzy partition technique is employed to deal with the fuzzy attributes for classification. The rules generated in classifying the overall data can be used to gain more knowledge from the data collected.
文摘多尺度理论已被引入到数据挖掘领域中,但目前多尺度数据挖掘的研究并不深入,缺乏普适性理论与方法。针对上述问题,研究了普适的多尺度数据挖掘理论,提出了尺度上推关联规则挖掘算法。首先基于概念分层理论给出了数据尺度划分和数据尺度的定义;然后根据多尺度理论的研究重点阐明了多尺度数据挖掘的实质及研究核心;最后在多尺度数据理论研究的基础上提出了尺度上推关联规则挖掘算法SU-ARMA(scaling-up association rules mining algorithm)。该算法利用采样理论和Jaccard相似性系数对数据集挖掘结果中的频繁项集进行处理,实现了多尺度数据间知识的向上推导。利用人造数据集和H省全员人口真实数据集对算法进行了实验和分析,实验结果表明算法具有较高的覆盖率、精确度和较低的支持度估计误差,是可行且有效的。