The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurfac...The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurface structures within a depth of approximately 50 m.However,it was still difficult to identify finer layers from the cluttered reflections and scattering waves.We applied deconvolution to improve the vertical resolution of the radar profile by extending the limited bandwidth associated with the emissive radar pulse.To overcome the challenges arising from the mixed-phase wavelets and the problematic amplification of noise,we performed predictive deconvolution to remove the minimum-phase components from the Chang’E-4 dataset,followed by a comprehensive phase rotation to rectify phase anomalies in the radar image.Subsequently,we implemented irreversible migration filtering to mitigate the noise and diminutive clutter echoes amplified by deconvolution.The processed data showed evident enhancement of the vertical resolution with a widened bandwidth in the frequency domain and better signal clarity in the time domain,providing us with more undisputed details of subsurface structures near the Chang’E-4 landing site.展开更多
When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive ...When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive numerical data may probably exceed the capacity of available memory,resulting in failure of rendering.Based on the out-of-core technique,this paper proposes a method to effectively utilize external storage and reduce memory usage dramatically,so as to solve the problem of insufficient memory for massive data rendering on general personal computers.Based on this method,a new postprocessor is developed.It is capable to illustrate filling and solidification processes of casting,as well as thermal stess.The new post-processor also provides fast interaction to simulation results.Theoretical analysis as well as several practical examples prove that the memory usage and loading time of the post-processor are independent of the size of the relevant files,but the proportion of the number of cells on surface.Meanwhile,the speed of rendering and fetching of value from the mouse is appreciable,and the demands of real-time and interaction are satisfied.展开更多
A new synergy decision method for radar and infrared search and track (IRST) data fusion is proposed, to solve such problems as how to decrease opportunities for radar suffering from being locked on by adverse electr...A new synergy decision method for radar and infrared search and track (IRST) data fusion is proposed, to solve such problems as how to decrease opportunities for radar suffering from being locked on by adverse electronic support measures (ESM), how to retrieve range information of the target during radar off, and how to detect the maneuver of the target. Firstly, polynomials used to predict target motion states are constructed. Secondly, a set of discriminants for detecting target maneuver are established by comparing the predicted values with the observations from IRST. Thirdly, a set of decisions are presented. Lastly, simulation is performed on the given scenario to test the validity of the method.展开更多
In the preparation of firing tables, the determination of projectile drag coefficientsthrough firing test radar data reduction is very important. Many methods have been developed for this work but none of them appear ...In the preparation of firing tables, the determination of projectile drag coefficientsthrough firing test radar data reduction is very important. Many methods have been developed for this work but none of them appear to be satisfactory in one Way or another. Inthis paper a multi-spline model of drag coefficient (cd) curve is developed that can guaranteefirst derivative continuity of the cd curve and has good flexibility of fitting accurately to acd curve from subsonic up to supersonic range. Practical firing data reduction tests showboth fast convergence and accurate fitting results. Typical velocity fitting RMS errors are0.05-0.08 m/s.展开更多
In order to storage resource of a radar recognition system, schemes for reducing data storage and for correlation discrimination of radar based on wavelet packets were proposed Experiment results at various signal-t...In order to storage resource of a radar recognition system, schemes for reducing data storage and for correlation discrimination of radar based on wavelet packets were proposed Experiment results at various signal-to-noise ratios were given The given.ability of the reduced data method's validity are supported by experimental results. Using optimal basis can get higher successful recognition rate using rigid wavelet basis.展开更多
This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and wind...This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational (4DVAR) data assimilation system. A squall-line case observed during a field campaign is selected to investigate the performance of the technique. A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions. The surface-based cold pool, divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation. Three experiments--assimilating radar data only, assimilating radar data with surface data blended in a mesoscale background, and assimilating both radar and surface observations with a 4DVAR cost function--are conducted to examine the impact of the surface data assimilation. Independent surface and wind profiler observations are used for verification. The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations. It is also shown that the additional surface data can help improve the analysis and forecast at low levels. Surface and low-level features of the squall line-- including the surface warm inflow, cold pool, gust front, and low-level wind--are much closer to the observations after assimilating the surface data in VDRAS.展开更多
Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the dat...Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the data assimilation frequency of radar data on analyses and forecasts. A three-dimensional variational system was used to assimilate radial velocity data,and a cloud analysis system was used for reflectivity assimilation with a 2-h assimilation window covering the initial stage of the squall line. Two operators of radar reflectivity for cloud analyses corresponding to single-and double-moment schemes were used. In this study, we examined the sensitivity of assimilation frequency using 10-, 20-, 30-, and 60-min assimilation intervals. The results showed that analysis fields were not consistent with model dynamics and microphysics in general;thus, model states, including dynamic and microphysical variables, required approximately 20 min to reach a new balance after data assimilation in all experiments. Moreover, a 20-min data assimilation interval generally produced better forecasts for both single-and double-moment schemes in terms of equitable threat and bias scores. We conclude that a higher data assimilation frequency can produce a more intense cold pool and rear inflow jets but does not necessarily lead to a better forecast.展开更多
Different choices of control variables in variational assimilation can bring about different influences on the analyzed atmospheric state. Based on the WRF model's three-dimensional variational assimilation system, t...Different choices of control variables in variational assimilation can bring about different influences on the analyzed atmospheric state. Based on the WRF model's three-dimensional variational assimilation system, this study compares the be- havior of two momentum control variable options-streamfunction velocity potential (ψ-χ) and horizontal wind components (U-V)-in radar wind data assimilation for a squall line case that occurred in Jiangsu Province on 24 August 2014. The wind increment from the single observation test shows that the ψ-χ control variable scheme produces negative increments in the neighborhood around the observation point because streamfunction and velocity potential preserve integrals of velocity. On the contrary, the U-V control variable scheme objectively reflects the information of the observation itself. Furthermore, radial velocity data from 17 Doppler radars in eastern China are assimilated. As compared to the impact of conventional observation, the assimilation of radar radial velocity based on the U-V control variable scheme significantly improves the mesoscale dynamic field in the initial condition. The enhanced low-level jet stream, water vapor convergence and low-level wind shear result in better squall line forecasting. However, the ψ-χ control variable scheme generates a discontinuous wind field and unrealistic convergence/divergence in the analyzed field, which lead to a degraded precipitation forecast.展开更多
For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p...For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.展开更多
To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented ...To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) pack- age. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.展开更多
The traditional threat score based on fixed thresholds for precipitation verification is sensitive to intensity forecast bias. In this study, the neighborhood precipitation threat score is modified by defining the thr...The traditional threat score based on fixed thresholds for precipitation verification is sensitive to intensity forecast bias. In this study, the neighborhood precipitation threat score is modified by defining the thresholds in terms of the percentiles of overall precipitation instead of fixed threshold values. The impact of intensity forecast bias on the calculated threat score is reduced. The method is tested with the forecasts of a tropical storm that re-intensified after making landfall and caused heavy flooding. The forecasts are produced with and without radar data assimilation. The forecast with assimilation of both radial velocity and reflectivity produce precipitation patterns that better match observations but have large positive intensity bias. When using fixed thresholds, the neighborhood threat scores fail to yield high scores for forecasts that have good pattern match with observations, due to large intensity bias. In contrast, the percentile-based neighborhood method yields the highest score for the forecast with the best pattern match and the smallest position error. The percentile-based method also yields scores that are more consistent with object-based verifications, which are less sensitive to intensity bias, demonstrating the potential value of percentile-based verification.展开更多
This study investigated the impact of multiple-Doppler radar data and surface data assimilation on forecasts of heavy rainfall over the central Korean Peninsula;the Weather Research and Forecasting(WRF) model and its ...This study investigated the impact of multiple-Doppler radar data and surface data assimilation on forecasts of heavy rainfall over the central Korean Peninsula;the Weather Research and Forecasting(WRF) model and its three-dimensional variational data assimilation system(3DVAR) were used for this purpose. During data assimilation,the WRF 3DVAR cycling mode with incremental analysis updates(IAU) was used. A maximum rainfall of 335.0 mm occurred during a 12-h period from 2100 UTC 11 July 2006 to 0900 UTC 12 July 2006.Doppler radar data showed that the heavy rainfall was due to the back-building formation of mesoscale convective systems(MCSs).New convective cells were continuously formed in the upstream region,which was characterized by a strong southwesterly low-level jet(LLJ).The LLJ also facilitated strong convergence due to horizontal wind shear,which resulted in maintenance of the storms.The assimilation of both multiple-Doppler radar and surface data improved the accuracy of precipitation forecasts and had a more positive impact on quantitative forecasting(QPF) than the assimilation of either radar data or surface data only.The back-building characteristic was successfully forecasted when the multiple-Doppler radar data and surface data were assimilated.In data assimilation experiments,the radar data helped forecast the development of convective storms responsible for heavy rainfall,and the surface data contributed to the occurrence of intensified low-level winds.The surface data played a significant role in enhancing the thermal gradient and modulating the planetary boundary layer of the model,which resulted in favorable conditions for convection.展开更多
The present study designs experiments on the direct assimilation of radial velocity and reflectivity data collected by an S-band Doppler weather radar(CINRAD WSR-98D) at the Hefei Station and the reanalysis data produ...The present study designs experiments on the direct assimilation of radial velocity and reflectivity data collected by an S-band Doppler weather radar(CINRAD WSR-98D) at the Hefei Station and the reanalysis data produced by the United States National Centers for Environmental Prediction using the Weather Research and Forecasting(WRF) model,the WRF model with a three-dimensional variational(3DVAR) data assimilation system and the WRF model with an ensemble square root filter(EnSRF) data assimilation system.In addition,the present study analyzes a Meiyu front heavy rainfall process that occurred in the Yangtze-Huaihe River Basin from July 4 to July 5,2003,through numerical simulation.The results show the following.(1) The assimilation of the radar radial velocity data can increase the perturbations in the low-altitude atmosphere over the heavy rainfall region,enhance the convective activities and reduce excessive simulated precipitation.(2) The 3DVAR assimilation method significantly adjusts the horizontal wind field.The assimilation of the reflectivity data improves the microphysical quantities and dynamic fields in the model.In addition,the assimilation of the radial velocity and reflectivity data can better adjust the wind fields and improve the intensity and location of the simulated radar echo bands.(3) The EnSRF assimilation method can assimilate more small-scale wind field information into the model.The assimilation of the reflectivity data alone can relatively accurately forecast the rainfall centers.In addition,the assimilation of the radial velocity and reflectivity data can improve the location of the simulated radar echo bands.(4) The use of the 3DVAR and EnSRF assimilation methods to assimilate the radar radial velocity and reflectivity data can improve the forecast of precipitation,rain-band areal coverage and the center location and intensity of precipitation.展开更多
High Frequency(HF) radar current data is assimilated into a shelf sea circulation model based on optimal interpolation(OI) method. The purpose of this work is to develop a real-time computationally highly efficient as...High Frequency(HF) radar current data is assimilated into a shelf sea circulation model based on optimal interpolation(OI) method. The purpose of this work is to develop a real-time computationally highly efficient assimilation method to improve the forecast of shelf current. Since the true state of the ocean is not known, the specification of background error covariance is arduous. Usually, it is assumed or calculated from an ensemble of model states and is kept in constant. In our method, the spatial covariances of model forecast errors are derived from differences between the adjacent model forecast fields, which serve as the forecast tendencies. The assumption behind this is that forecast errors can resemble forecast tendencies, since variances are large when fields change quickly and small when fields change slowly. The implementation of HF radar data assimilation is found to yield good information for analyses. After assimilation, the root-mean-square error of model decreases significantly. Besides, three assimilation runs with variational observation density are implemented. The comparison of them indicates that the pattern described by observations is much more important than the amount of observations. It is more useful to expand the scope of observations than to increase the spatial interval. From our tests, the spatial interval of observation can be 5 times bigger than that of model grid.展开更多
A heavy rainfall case related to Mesoscale Convective Systems (MCSs) over the Korean Peninsula was selected to investigate the impact of radar data assimilation on a heavy rainfall forecast. The Weather Research and...A heavy rainfall case related to Mesoscale Convective Systems (MCSs) over the Korean Peninsula was selected to investigate the impact of radar data assimilation on a heavy rainfall forecast. The Weather Research and Forecasting (WRF) three-dimensional variational (3DVAR) data assimilation system with tuning of the length scale of the background error covariance and observation error parameters was used to assimilate radar radial velocity and reffectivity data. The radar data used in the assimilation experiments were preprocessed using quality-control procedures and interpolated/thinned into Cartesian coordinates by the SPRINT/CEDRIC packages. Sensitivity experiments were carried out in order to determine the optimal values of the assimilation window length and the update frequency used for the rapid update cycle and incremental analysis update experiments. The assimilation of radar data has a positive influence on the heavy rainfall forecast. Quantitative features of the heavy rainfall case, such as the maximum rainfall amount and Root Mean Squared Differences (RMSDs) of zonal/meridional wind components, were improved by tuning of the length scale and observation error parameters. Qualitative features of the case, such as the maximum rainfall position and time series of hourly rainfall, were enhanced by an incremental analysis update technique. The positive effects of the radar data assimilation and the tuning of the length scale and observation error parameters were clearly shown by the 3DVAR increment.展开更多
On 21 May 2021(UTC),an MW 7.4 earthquake jolted the east Bayan Har block in the Tibetan Plateau.The earthquake received widespread attention as it is the largest event in the Tibetan Plateau and its surroundings since...On 21 May 2021(UTC),an MW 7.4 earthquake jolted the east Bayan Har block in the Tibetan Plateau.The earthquake received widespread attention as it is the largest event in the Tibetan Plateau and its surroundings since the 2008 Wenchuan earthquake,and especially in proximity to the seismic gaps on the east Kunlun fault.Here we use satellite interferometric synthetic aperture radar data and subpixel offset observations along the range directions to characterize the coseismic deformation of the earthquake.Range offset displacements depict clear surface ruptures with a total length of~170 km involving two possible activated fault segments in the earthquake.Coseismic modeling results indicate that the earthquake was dominated by left-lateral strike-slip motions of up to 7 m within the top 12 km of the crust.The well-resolved slip variations are characterized by five major slip patches along strike and 64%of shallow slip deficit,suggesting a young seismogenic structure.Spatial-temporal changes of the postseismic deformation are mapped from early 6-day and 24-day InSAR observations,and are well explained by time-dependent afterslip models.Analysis of Global Navigation Satellite System(GNSS)velocity profiles and strain rates suggests that the eastward extrusion of plateau is diffusely distributed across the east Bayan Har block,but exhibits significant lateral heterogeneities,as evidenced by magnetotelluric observations.The block-wide distributed deformation of the east Bayan Har block along with the significant co-and post-seismic stress loadings from the Madoi earthquake imply high seismic risks along regional faults,especially the Tuosuo Lake and Maqên-Maqu segments of the Kunlun fault that are known as seismic gaps.展开更多
According to the frequency property of Phasedarray ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis f...According to the frequency property of Phasedarray ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis for the PGPR's superposition data and makes detecting outcome simpler and detecting target more recognizable. At last, the analytical results of road test data of the Three Gorges prove the analytical method efficient. Key words phased-array ground penetrating radar - wigner time-frequency analysis - superposition data - object identification CLC number TN 715.7 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and 863 Program Foundation of China (2001AA132050-03)Biography: ZOU Lian (1975-), male, Ph. D candidate, research direction: signal processing.展开更多
To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore...To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsur- face to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the con- figuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.展开更多
Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unkn...Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unknown transmitting parameters.For different transmitter-receiver(bistatic)pairs,the coefficients are different.Thus,the recovered RCS in different transmitter-receiver(bistatic)pairs cannot be fused for further use.In this paper,we propose a quantity named quasi-echo-power(QEP)as well as a method for eliminating differences of this quantity among different transmitter-receiver(bistatic)pairs.The QEP is defined as the target echo power after being compensated for distance and pattern propagation factor.The proposed method estimates the station difference coefficients(SDCs)of transmitter-receiver(bistatic)pairs relative to the reference transmitter-receiver(bistatic)pair first.Then,it compensates the QEP and gets the compensated QEP.The compensated QEP possesses a linear relationship with the target RCS.Statistical analyses on the simulated and real-life QEP data show that the proposed method can effectively estimate the SDC between different stations,and the compensated QEP from different receiving stations has the same distribution characteristics for the same target.展开更多
An ocean state monitor and analysis radar(OSMAR), developed by Wuhan University in China, have been mounted at six stations along the coasts of East China Sea(ECS) to measure velocities(currents, waves and winds...An ocean state monitor and analysis radar(OSMAR), developed by Wuhan University in China, have been mounted at six stations along the coasts of East China Sea(ECS) to measure velocities(currents, waves and winds) at the sea surface. Radar-observed surface current is taken as an example to illustrate the operational high-frequency(HF) radar observing and data service platform(OP), presenting an operational flow from data observing, transmitting, processing, visualizing, to end-user service. Three layers(systems): radar observing system(ROS), data service system(DSS) and visualization service system(VSS), as well as the data flow within the platform are introduced. Surface velocities observed at stations are synthesized at the radar data receiving and preprocessing center of the ROS, and transmitted to the DSS, in which the data processing and quality control(QC) are conducted. Users are allowed to browse the processed data on the portal of the DSS, and access to those data files. The VSS aims to better show the data products by displaying the information on a visual globe. By utilizing the OP, the surface currents in East China Sea are monitored, and hourly and seasonal variabilities of them are investigated.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.42325406 and 42304187)the China Postdoctoral Science Foundation(Grant No.2023M733476)+3 种基金the CAS Project for Young Scientists in Basic Research(Grant No.YSBR082)the National Key R&D Program of China(Grant No.2022YFF0503203)the Key Research Program of the Institute of Geology and GeophysicsChinese Academy of Sciences(Grant Nos.IGGCAS-202101 and IGGCAS-202401).
文摘The Yutu-2 rover onboard the Chang’E-4 mission performed the first lunar penetrating radar detection on the farside of the Moon.The high-frequency channel presented us with many unprecedented details of the subsurface structures within a depth of approximately 50 m.However,it was still difficult to identify finer layers from the cluttered reflections and scattering waves.We applied deconvolution to improve the vertical resolution of the radar profile by extending the limited bandwidth associated with the emissive radar pulse.To overcome the challenges arising from the mixed-phase wavelets and the problematic amplification of noise,we performed predictive deconvolution to remove the minimum-phase components from the Chang’E-4 dataset,followed by a comprehensive phase rotation to rectify phase anomalies in the radar image.Subsequently,we implemented irreversible migration filtering to mitigate the noise and diminutive clutter echoes amplified by deconvolution.The processed data showed evident enhancement of the vertical resolution with a widened bandwidth in the frequency domain and better signal clarity in the time domain,providing us with more undisputed details of subsurface structures near the Chang’E-4 landing site.
基金supported by the New Century Excellent Talents in University(NCET-09-0396)the National Science&Technology Key Projects of Numerical Control(2012ZX04014-031)+1 种基金the Natural Science Foundation of Hubei Province(2011CDB279)the Foundation for Innovative Research Groups of the Natural Science Foundation of Hubei Province,China(2010CDA067)
文摘When castings become complicated and the demands for precision of numerical simulation become higher,the numerical data of casting numerical simulation become more massive.On a general personal computer,these massive numerical data may probably exceed the capacity of available memory,resulting in failure of rendering.Based on the out-of-core technique,this paper proposes a method to effectively utilize external storage and reduce memory usage dramatically,so as to solve the problem of insufficient memory for massive data rendering on general personal computers.Based on this method,a new postprocessor is developed.It is capable to illustrate filling and solidification processes of casting,as well as thermal stess.The new post-processor also provides fast interaction to simulation results.Theoretical analysis as well as several practical examples prove that the memory usage and loading time of the post-processor are independent of the size of the relevant files,but the proportion of the number of cells on surface.Meanwhile,the speed of rendering and fetching of value from the mouse is appreciable,and the demands of real-time and interaction are satisfied.
文摘A new synergy decision method for radar and infrared search and track (IRST) data fusion is proposed, to solve such problems as how to decrease opportunities for radar suffering from being locked on by adverse electronic support measures (ESM), how to retrieve range information of the target during radar off, and how to detect the maneuver of the target. Firstly, polynomials used to predict target motion states are constructed. Secondly, a set of discriminants for detecting target maneuver are established by comparing the predicted values with the observations from IRST. Thirdly, a set of decisions are presented. Lastly, simulation is performed on the given scenario to test the validity of the method.
文摘In the preparation of firing tables, the determination of projectile drag coefficientsthrough firing test radar data reduction is very important. Many methods have been developed for this work but none of them appear to be satisfactory in one Way or another. Inthis paper a multi-spline model of drag coefficient (cd) curve is developed that can guaranteefirst derivative continuity of the cd curve and has good flexibility of fitting accurately to acd curve from subsonic up to supersonic range. Practical firing data reduction tests showboth fast convergence and accurate fitting results. Typical velocity fitting RMS errors are0.05-0.08 m/s.
文摘In order to storage resource of a radar recognition system, schemes for reducing data storage and for correlation discrimination of radar based on wavelet packets were proposed Experiment results at various signal-to-noise ratios were given The given.ability of the reduced data method's validity are supported by experimental results. Using optimal basis can get higher successful recognition rate using rigid wavelet basis.
基金primarily supported by the National Fundamental Research 973 Program of China(Grant No.2013CB430101)the National Natural Science Foundation of China(Grant Nos.41275031,41322032 and 41475015)+1 种基金the Social Commonwealth Research Program(Grant Nos.GYHY201506004 and GYHY201006007)the Program for New Century Excellent Talents in Universities of China
文摘This paper examines how assimilating surface observations can improve the analysis and forecast ability of a four- dimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational (4DVAR) data assimilation system. A squall-line case observed during a field campaign is selected to investigate the performance of the technique. A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions. The surface-based cold pool, divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation. Three experiments--assimilating radar data only, assimilating radar data with surface data blended in a mesoscale background, and assimilating both radar and surface observations with a 4DVAR cost function--are conducted to examine the impact of the surface data assimilation. Independent surface and wind profiler observations are used for verification. The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations. It is also shown that the additional surface data can help improve the analysis and forecast at low levels. Surface and low-level features of the squall line-- including the surface warm inflow, cold pool, gust front, and low-level wind--are much closer to the observations after assimilating the surface data in VDRAS.
基金supported by the National Key R&D Program of China (Grant No.2017YFC1502104)the National Natural Science Foundation of China (Grant Nos.41775099 and 41605026)Grant No.NJCAR2016ZD02,and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Assimilation configurations have significant impacts on analysis results and subsequent forecasts. A squall line system that occurred on 23 April 2007 over southern China was used to investigate the impacts of the data assimilation frequency of radar data on analyses and forecasts. A three-dimensional variational system was used to assimilate radial velocity data,and a cloud analysis system was used for reflectivity assimilation with a 2-h assimilation window covering the initial stage of the squall line. Two operators of radar reflectivity for cloud analyses corresponding to single-and double-moment schemes were used. In this study, we examined the sensitivity of assimilation frequency using 10-, 20-, 30-, and 60-min assimilation intervals. The results showed that analysis fields were not consistent with model dynamics and microphysics in general;thus, model states, including dynamic and microphysical variables, required approximately 20 min to reach a new balance after data assimilation in all experiments. Moreover, a 20-min data assimilation interval generally produced better forecasts for both single-and double-moment schemes in terms of equitable threat and bias scores. We conclude that a higher data assimilation frequency can produce a more intense cold pool and rear inflow jets but does not necessarily lead to a better forecast.
基金jointly supported by the National Fundamental Research(973)Program of China(Grant Nos.2015CB452801 and 2013CB430100)the Jiangsu Meteorological Bureau Research Fund Project for the Youth(Grant Nos.Q201514 and Q201407)+3 种基金the Shandong Institute of Meteorological Sciences Research Fund Project(Grant No.SDQXKF2015M10)the Jiangsu Provincial Key Technology R&D Program(Grant No.BE2013730)the Jiangsu Meteorological Bureau Key Research Fund Project(Grant No.KZ201502)the National Key Technology R&D Program(Grant No.2014BAG01B01)
文摘Different choices of control variables in variational assimilation can bring about different influences on the analyzed atmospheric state. Based on the WRF model's three-dimensional variational assimilation system, this study compares the be- havior of two momentum control variable options-streamfunction velocity potential (ψ-χ) and horizontal wind components (U-V)-in radar wind data assimilation for a squall line case that occurred in Jiangsu Province on 24 August 2014. The wind increment from the single observation test shows that the ψ-χ control variable scheme produces negative increments in the neighborhood around the observation point because streamfunction and velocity potential preserve integrals of velocity. On the contrary, the U-V control variable scheme objectively reflects the information of the observation itself. Furthermore, radial velocity data from 17 Doppler radars in eastern China are assimilated. As compared to the impact of conventional observation, the assimilation of radar radial velocity based on the U-V control variable scheme significantly improves the mesoscale dynamic field in the initial condition. The enhanced low-level jet stream, water vapor convergence and low-level wind shear result in better squall line forecasting. However, the ψ-χ control variable scheme generates a discontinuous wind field and unrealistic convergence/divergence in the analyzed field, which lead to a degraded precipitation forecast.
基金supported by the National Natural Science Foundation of China(61371172)the International S&T Cooperation Program of China(2015DFR10220)+1 种基金the Ocean Engineering Project of National Key Laboratory Foundation(1213)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.
基金supported by a grant to CAPS from Shenzhen Meteorological Bureau (SZMB) and Shenzhen Key Laboratory of Severe Weather in South ChinaSupport was jointly provided by the National Basic Research Program of China (973 Program, Grant No. 2013CB430105)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05100300)the National Natural Science Foundation of China (Grant No. 41105095)
文摘To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) pack- age. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.
基金primarily supported by the National 973 Fundamental Research Program of China(Grant No.2013CB430103)the Department of Transportation Federal Aviation Administration(Grant No.NA17RJ1227)through the National Oceanic and Atmospheric Administration+1 种基金supported by the National Science Foundation of China(Grant No.41405100)the Fundamental Research Funds for the Central Universities(Grant No.20620140343)
文摘The traditional threat score based on fixed thresholds for precipitation verification is sensitive to intensity forecast bias. In this study, the neighborhood precipitation threat score is modified by defining the thresholds in terms of the percentiles of overall precipitation instead of fixed threshold values. The impact of intensity forecast bias on the calculated threat score is reduced. The method is tested with the forecasts of a tropical storm that re-intensified after making landfall and caused heavy flooding. The forecasts are produced with and without radar data assimilation. The forecast with assimilation of both radial velocity and reflectivity produce precipitation patterns that better match observations but have large positive intensity bias. When using fixed thresholds, the neighborhood threat scores fail to yield high scores for forecasts that have good pattern match with observations, due to large intensity bias. In contrast, the percentile-based neighborhood method yields the highest score for the forecast with the best pattern match and the smallest position error. The percentile-based method also yields scores that are more consistent with object-based verifications, which are less sensitive to intensity bias, demonstrating the potential value of percentile-based verification.
基金supported by the Global Partnership Program of the Korea Foundation of International Cooperation for Science and Technology(KICOS)the Korea Meteorological Administration Research and Development Program under Grant RACS 2010-2016This research was also supported by the BK21 program of the Korean Government Ministry of Education.
文摘This study investigated the impact of multiple-Doppler radar data and surface data assimilation on forecasts of heavy rainfall over the central Korean Peninsula;the Weather Research and Forecasting(WRF) model and its three-dimensional variational data assimilation system(3DVAR) were used for this purpose. During data assimilation,the WRF 3DVAR cycling mode with incremental analysis updates(IAU) was used. A maximum rainfall of 335.0 mm occurred during a 12-h period from 2100 UTC 11 July 2006 to 0900 UTC 12 July 2006.Doppler radar data showed that the heavy rainfall was due to the back-building formation of mesoscale convective systems(MCSs).New convective cells were continuously formed in the upstream region,which was characterized by a strong southwesterly low-level jet(LLJ).The LLJ also facilitated strong convergence due to horizontal wind shear,which resulted in maintenance of the storms.The assimilation of both multiple-Doppler radar and surface data improved the accuracy of precipitation forecasts and had a more positive impact on quantitative forecasting(QPF) than the assimilation of either radar data or surface data only.The back-building characteristic was successfully forecasted when the multiple-Doppler radar data and surface data were assimilated.In data assimilation experiments,the radar data helped forecast the development of convective storms responsible for heavy rainfall,and the surface data contributed to the occurrence of intensified low-level winds.The surface data played a significant role in enhancing the thermal gradient and modulating the planetary boundary layer of the model,which resulted in favorable conditions for convection.
基金Beijige Fund of Jiangsu Institute of Meteorological Sciences(BJG201512)Natural Science Foundation of Jiangsu Province(BK20161074,BK20130990)+1 种基金Key Scientific Research Projects of Jiangsu Provincial Meteorological Bureau(KZ201605)Young Meteorological Research of Jiangsu Provincial Meteorological Bureau(Q201611)
文摘The present study designs experiments on the direct assimilation of radial velocity and reflectivity data collected by an S-band Doppler weather radar(CINRAD WSR-98D) at the Hefei Station and the reanalysis data produced by the United States National Centers for Environmental Prediction using the Weather Research and Forecasting(WRF) model,the WRF model with a three-dimensional variational(3DVAR) data assimilation system and the WRF model with an ensemble square root filter(EnSRF) data assimilation system.In addition,the present study analyzes a Meiyu front heavy rainfall process that occurred in the Yangtze-Huaihe River Basin from July 4 to July 5,2003,through numerical simulation.The results show the following.(1) The assimilation of the radar radial velocity data can increase the perturbations in the low-altitude atmosphere over the heavy rainfall region,enhance the convective activities and reduce excessive simulated precipitation.(2) The 3DVAR assimilation method significantly adjusts the horizontal wind field.The assimilation of the reflectivity data improves the microphysical quantities and dynamic fields in the model.In addition,the assimilation of the radial velocity and reflectivity data can better adjust the wind fields and improve the intensity and location of the simulated radar echo bands.(3) The EnSRF assimilation method can assimilate more small-scale wind field information into the model.The assimilation of the reflectivity data alone can relatively accurately forecast the rainfall centers.In addition,the assimilation of the radial velocity and reflectivity data can improve the location of the simulated radar echo bands.(4) The use of the 3DVAR and EnSRF assimilation methods to assimilate the radar radial velocity and reflectivity data can improve the forecast of precipitation,rain-band areal coverage and the center location and intensity of precipitation.
基金supported by the State Oceanic Administration Young Marine Science Foundation (No. 2013201)the Shandong Provincial Key Laboratory of Marine Ecology and Environment & Disaster Prevention and Mitigation Foundation (No. 2012007)+1 种基金the Marine Public Foundation (No. 201005018)the North China Sea Branch Scientific Foundation (No. 2014B10)
文摘High Frequency(HF) radar current data is assimilated into a shelf sea circulation model based on optimal interpolation(OI) method. The purpose of this work is to develop a real-time computationally highly efficient assimilation method to improve the forecast of shelf current. Since the true state of the ocean is not known, the specification of background error covariance is arduous. Usually, it is assumed or calculated from an ensemble of model states and is kept in constant. In our method, the spatial covariances of model forecast errors are derived from differences between the adjacent model forecast fields, which serve as the forecast tendencies. The assumption behind this is that forecast errors can resemble forecast tendencies, since variances are large when fields change quickly and small when fields change slowly. The implementation of HF radar data assimilation is found to yield good information for analyses. After assimilation, the root-mean-square error of model decreases significantly. Besides, three assimilation runs with variational observation density are implemented. The comparison of them indicates that the pattern described by observations is much more important than the amount of observations. It is more useful to expand the scope of observations than to increase the spatial interval. From our tests, the spatial interval of observation can be 5 times bigger than that of model grid.
基金supported by the Korea Meteorological Administration Research and Development Program under Grant CATER 2006–2303 and by the Brain Korea 21 Project in 2007
文摘A heavy rainfall case related to Mesoscale Convective Systems (MCSs) over the Korean Peninsula was selected to investigate the impact of radar data assimilation on a heavy rainfall forecast. The Weather Research and Forecasting (WRF) three-dimensional variational (3DVAR) data assimilation system with tuning of the length scale of the background error covariance and observation error parameters was used to assimilate radar radial velocity and reffectivity data. The radar data used in the assimilation experiments were preprocessed using quality-control procedures and interpolated/thinned into Cartesian coordinates by the SPRINT/CEDRIC packages. Sensitivity experiments were carried out in order to determine the optimal values of the assimilation window length and the update frequency used for the rapid update cycle and incremental analysis update experiments. The assimilation of radar data has a positive influence on the heavy rainfall forecast. Quantitative features of the heavy rainfall case, such as the maximum rainfall amount and Root Mean Squared Differences (RMSDs) of zonal/meridional wind components, were improved by tuning of the length scale and observation error parameters. Qualitative features of the case, such as the maximum rainfall position and time series of hourly rainfall, were enhanced by an incremental analysis update technique. The positive effects of the radar data assimilation and the tuning of the length scale and observation error parameters were clearly shown by the 3DVAR increment.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.SBK2020043202)by Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,Wuhan University(No.19-01-08).
文摘On 21 May 2021(UTC),an MW 7.4 earthquake jolted the east Bayan Har block in the Tibetan Plateau.The earthquake received widespread attention as it is the largest event in the Tibetan Plateau and its surroundings since the 2008 Wenchuan earthquake,and especially in proximity to the seismic gaps on the east Kunlun fault.Here we use satellite interferometric synthetic aperture radar data and subpixel offset observations along the range directions to characterize the coseismic deformation of the earthquake.Range offset displacements depict clear surface ruptures with a total length of~170 km involving two possible activated fault segments in the earthquake.Coseismic modeling results indicate that the earthquake was dominated by left-lateral strike-slip motions of up to 7 m within the top 12 km of the crust.The well-resolved slip variations are characterized by five major slip patches along strike and 64%of shallow slip deficit,suggesting a young seismogenic structure.Spatial-temporal changes of the postseismic deformation are mapped from early 6-day and 24-day InSAR observations,and are well explained by time-dependent afterslip models.Analysis of Global Navigation Satellite System(GNSS)velocity profiles and strain rates suggests that the eastward extrusion of plateau is diffusely distributed across the east Bayan Har block,but exhibits significant lateral heterogeneities,as evidenced by magnetotelluric observations.The block-wide distributed deformation of the east Bayan Har block along with the significant co-and post-seismic stress loadings from the Madoi earthquake imply high seismic risks along regional faults,especially the Tuosuo Lake and Maqên-Maqu segments of the Kunlun fault that are known as seismic gaps.
文摘According to the frequency property of Phasedarray ground penetrating radar (PGPR), this paper gives a frequency point slice method based on Wigner time-frequency analysis. This method solves the problem of analysis for the PGPR's superposition data and makes detecting outcome simpler and detecting target more recognizable. At last, the analytical results of road test data of the Three Gorges prove the analytical method efficient. Key words phased-array ground penetrating radar - wigner time-frequency analysis - superposition data - object identification CLC number TN 715.7 Foundation item: Supported by the National Nature Science Foundation of China (50099620) and 863 Program Foundation of China (2001AA132050-03)Biography: ZOU Lian (1975-), male, Ph. D candidate, research direction: signal processing.
基金Supported by the National Natural Science Foundation of China
文摘To improve our understanding of the formation and evolution of the Moon, one of the payloads onboard the Chang'e-3 (CE-3) rover is Lunar Penetrating Radar (LPR). This investigation is the first attempt to explore the lunar subsurface structure by using ground penetrating radar with high resolution. We have probed the subsur- face to a depth of several hundred meters using LPR. In-orbit testing, data processing and the preliminary results are presented. These observations have revealed the con- figuration of regolith where the thickness of regolith varies from about 4 m to 6 m. In addition, one layer of lunar rock, which is about 330 m deep and might have been accumulated during the depositional hiatus of mare basalts, was detected.
基金supported by the National Natural Science Foundation of China(61931015,62071335)the Science and Technology Program of Shenzhen(JCYJ20170818112037398)the Technological Innovation Project of Hubei Province of China(2019AAA061).
文摘Radar cross section(RCS)is an important attribute of radar targets and has been widely used in automatic target recognition(ATR).In a passive radar,only the RCS multiplied by a coefficient is available due to the unknown transmitting parameters.For different transmitter-receiver(bistatic)pairs,the coefficients are different.Thus,the recovered RCS in different transmitter-receiver(bistatic)pairs cannot be fused for further use.In this paper,we propose a quantity named quasi-echo-power(QEP)as well as a method for eliminating differences of this quantity among different transmitter-receiver(bistatic)pairs.The QEP is defined as the target echo power after being compensated for distance and pattern propagation factor.The proposed method estimates the station difference coefficients(SDCs)of transmitter-receiver(bistatic)pairs relative to the reference transmitter-receiver(bistatic)pair first.Then,it compensates the QEP and gets the compensated QEP.The compensated QEP possesses a linear relationship with the target RCS.Statistical analyses on the simulated and real-life QEP data show that the proposed method can effectively estimate the SDC between different stations,and the compensated QEP from different receiving stations has the same distribution characteristics for the same target.
基金The National Natural Science Foundation of China under contract No.41206012
文摘An ocean state monitor and analysis radar(OSMAR), developed by Wuhan University in China, have been mounted at six stations along the coasts of East China Sea(ECS) to measure velocities(currents, waves and winds) at the sea surface. Radar-observed surface current is taken as an example to illustrate the operational high-frequency(HF) radar observing and data service platform(OP), presenting an operational flow from data observing, transmitting, processing, visualizing, to end-user service. Three layers(systems): radar observing system(ROS), data service system(DSS) and visualization service system(VSS), as well as the data flow within the platform are introduced. Surface velocities observed at stations are synthesized at the radar data receiving and preprocessing center of the ROS, and transmitted to the DSS, in which the data processing and quality control(QC) are conducted. Users are allowed to browse the processed data on the portal of the DSS, and access to those data files. The VSS aims to better show the data products by displaying the information on a visual globe. By utilizing the OP, the surface currents in East China Sea are monitored, and hourly and seasonal variabilities of them are investigated.