This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from t...This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .展开更多
In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization tec...In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.展开更多
Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivati...Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative which has the functions of both edge detection and enhancement techniques. First, we calculate the total horizontal derivative (THDR) of the potential-field data and then compute the n-order vertical derivative (VDRn) of the THDR. For the n-order vertical derivative, the peak value of total horizontal derivative (PTHDR) is obtained using a threshold value greater than 0. This PTHDR can be used for edge detection. Second, the PTHDR value is divided by the total horizontal derivative and normalized by the maximum value. Finally, we used different kinds of numerical models to verify the effectiveness and reliability of the new edge recognition technology.展开更多
The south-east of Cameroon encompasses a wide variety of geological structures among which we can cite the Congo Craton (CC), the Sanaga Fault (SF), the Yaoundé Domain, the Panafrican belt, the Protozoic series a...The south-east of Cameroon encompasses a wide variety of geological structures among which we can cite the Congo Craton (CC), the Sanaga Fault (SF), the Yaoundé Domain, the Panafrican belt, the Protozoic series and the Dja complex. The presence of all these structures justifies the great tectonic activity to which this area was subject from the rupture of Pangea to the creation of the different plates that exist today. In this work, we will bring out a high-resolution structural map of the study area by applying the qualitative analysis of the phase filters on 200,900 points of gravimetric data obtained from the combination of the XGM2016 and ETOPO1 models. Then, with these same data, we will bring out another structural map with the maxima method called Multi-Scale Horizontal Derivative of Vertical Derivative (MSHDVD) which will be compared to the first in order to show the limits of the MSHDVD method. To do this, we will first use the extension method to highlight the map of residual anomalies, then a combination of derivative, gradient and phase filters to highlight the geological structures responsible for fracturing in this area. Phase filters have the advantage that they make it possible to highlight all the geological edges responsible for the fracturing without taking into account the depth, while the MSHDVD method highlights the existing geological contacts (edges) at depths well defined by the examiner. The structural map obtained with the MSHDVD method shows that the major structural direction in this zone is W-E while that obtained from the interpretation of the phase filters is more precise and shows that the major structural direction in this area would be N-S and this result would be in perfect agreement with the tectonics of East Cameroon.展开更多
Grassland ecosystem is an important component of the terrestrial carbon cycle system. Clear comprehension of soil organic carbon(SOC) storage and potential of grasslands is very important for the effective managemen...Grassland ecosystem is an important component of the terrestrial carbon cycle system. Clear comprehension of soil organic carbon(SOC) storage and potential of grasslands is very important for the effective management of grassland ecosystems. Grasslands in Inner Mongolia have undergone evident impacts from human activities and natural factors in recent decades. To explore the changes of carbon sequestration capacity of grasslands from 2000 to 2012, we carried out studies on the estimation of SOC storage and potential of grasslands in central and eastern Inner Mongolia, China based on field investigations and MODIS image data. First, we calculated vegetation cover using the dimidiate pixel model based on MODIS-EVI images. Following field investigations of aboveground biomass and plant height, we used a grassland quality evaluation model to get the grassland evaluation index, which is typically used to represent grassland quality. Second, a correlation regression model was established between grassland evaluation index and SOC density. Finally, by this regression model, we calculated the SOC storage and potential of the studied grasslands. Results indicated that SOC storage increased with fluctuations in the study area, and the annual changes varied among different sub-regions. The SOC storage of grasslands in 2012 increased by 0.51×1012 kg C compared to that in 2000. The average carbon sequestration rate was 0.04×1012 kg C/a. The slope of the values of SOC storage showed that SOC storage exhibited an overall increase since 2000, particularly for the grasslands of Hulun Buir city and Xilin Gol League, where the typical grassland type was mainly distributed. Taking the SOC storage under the best grassland quality between 2000 and 2012 as a reference, this study predicted that the SOC potential of grasslands in central and eastern Inner Mongolia in 2012 is 1.38×1012 kg C. This study will contribute to researches on related methods and fundamental database, as well as provide a reference for the protection of grassland ecosystems and the formulation of local policies on sustainable grassland development.展开更多
We developed the China Regional Gravity Information System(RGIS) using mixed language programming in Visual Basic,Visual C++,and FORTRAN.The software is based on the MapInfo platform with OLE technology.With this ...We developed the China Regional Gravity Information System(RGIS) using mixed language programming in Visual Basic,Visual C++,and FORTRAN.The software is based on the MapInfo platform with OLE technology.With this system,we achieve visual data management for the database with spatial geography,geology data and gravity data as well as graphical data editing and data table operations over the whole of China.We are able to perform normalized gravity reduction,gravity and magnetic field transforms,gravity anomaly inversion and interpretation,thematic mapping and so on.展开更多
文摘This study aims to improve knowledge of the structure of southwest Cameroon based on the analysis and interpretation of gravity data derived from the SGG-UGM-2 model. A residual anomaly map was first calculated from the Bouguer anomaly map, which is strongly affected by a regional gradient. The residual anomaly map generated provides information on the variation in subsurface density, but does not provide sufficient information, hence the interest in using filtering with the aim of highlighting the structures affecting the area of south-west Cameroon. Three interpretation methods were used: vertical gradient, horizontal gradient coupled with upward continuation and Euler deconvolution. The application of these treatments enabled us to map a large number of gravimetric lineaments materializing density discontinuities. These lineaments are organized along main preferential directions: NW-SE, NNE-SSW, ENE-WSW and secondary directions: NNW-SSE, NE-SW, NS and E-W. Euler solutions indicate depths of up to 7337 m. Thanks to the results of this research, significant information has been acquired, contributing to a deeper understanding of the structural composition of the study area. The resulting structural map vividly illustrates the major tectonic events that shaped the geological framework of the study area. It also serves as a guide for prospecting subsurface resources (water and hydrocarbons). .
基金This work is supported by the research project (grant No. G20000467) of the Institute of Geology and Geophysics, CAS and bythe China Postdoctoral Science Foundation (No. 2004036083).
文摘In this paper the application of image enhancement techniques to potential field data is briefly described and two improved enhancement methods are introduced. One method is derived from the histogram equalization technique and automatically determines the color spectra of geophysical maps. Colors can be properly distributed and visual effects and resolution can be enhanced by the method. The other method is based on the modified Radon transform and gradient calculation and is used to detect and enhance linear features in gravity and magnetic images. The method facilites the detection of line segments in the transform domain. Tests with synthetic images and real data show the methods to be effective in feature enhancement.
基金supported by the National Science and Technology Major Projects (2008ZX05025)the Project of National Oil and Gas Resources Strategic Constituency Survey and Evaluation of the Ministry of Land and Resources,China (XQ-2007-05)
文摘Edge detection and enhancement techniques are commonly used in recognizing the edge of geologic bodies using potential field data. We present a new edge recognition technology based on the normalized vertical derivative of the total horizontal derivative which has the functions of both edge detection and enhancement techniques. First, we calculate the total horizontal derivative (THDR) of the potential-field data and then compute the n-order vertical derivative (VDRn) of the THDR. For the n-order vertical derivative, the peak value of total horizontal derivative (PTHDR) is obtained using a threshold value greater than 0. This PTHDR can be used for edge detection. Second, the PTHDR value is divided by the total horizontal derivative and normalized by the maximum value. Finally, we used different kinds of numerical models to verify the effectiveness and reliability of the new edge recognition technology.
文摘The south-east of Cameroon encompasses a wide variety of geological structures among which we can cite the Congo Craton (CC), the Sanaga Fault (SF), the Yaoundé Domain, the Panafrican belt, the Protozoic series and the Dja complex. The presence of all these structures justifies the great tectonic activity to which this area was subject from the rupture of Pangea to the creation of the different plates that exist today. In this work, we will bring out a high-resolution structural map of the study area by applying the qualitative analysis of the phase filters on 200,900 points of gravimetric data obtained from the combination of the XGM2016 and ETOPO1 models. Then, with these same data, we will bring out another structural map with the maxima method called Multi-Scale Horizontal Derivative of Vertical Derivative (MSHDVD) which will be compared to the first in order to show the limits of the MSHDVD method. To do this, we will first use the extension method to highlight the map of residual anomalies, then a combination of derivative, gradient and phase filters to highlight the geological structures responsible for fracturing in this area. Phase filters have the advantage that they make it possible to highlight all the geological edges responsible for the fracturing without taking into account the depth, while the MSHDVD method highlights the existing geological contacts (edges) at depths well defined by the examiner. The structural map obtained with the MSHDVD method shows that the major structural direction in this zone is W-E while that obtained from the interpretation of the phase filters is more precise and shows that the major structural direction in this area would be N-S and this result would be in perfect agreement with the tectonics of East Cameroon.
基金funded by the National Technology & Science Support Program of China (2012BAD16B02)
文摘Grassland ecosystem is an important component of the terrestrial carbon cycle system. Clear comprehension of soil organic carbon(SOC) storage and potential of grasslands is very important for the effective management of grassland ecosystems. Grasslands in Inner Mongolia have undergone evident impacts from human activities and natural factors in recent decades. To explore the changes of carbon sequestration capacity of grasslands from 2000 to 2012, we carried out studies on the estimation of SOC storage and potential of grasslands in central and eastern Inner Mongolia, China based on field investigations and MODIS image data. First, we calculated vegetation cover using the dimidiate pixel model based on MODIS-EVI images. Following field investigations of aboveground biomass and plant height, we used a grassland quality evaluation model to get the grassland evaluation index, which is typically used to represent grassland quality. Second, a correlation regression model was established between grassland evaluation index and SOC density. Finally, by this regression model, we calculated the SOC storage and potential of the studied grasslands. Results indicated that SOC storage increased with fluctuations in the study area, and the annual changes varied among different sub-regions. The SOC storage of grasslands in 2012 increased by 0.51×1012 kg C compared to that in 2000. The average carbon sequestration rate was 0.04×1012 kg C/a. The slope of the values of SOC storage showed that SOC storage exhibited an overall increase since 2000, particularly for the grasslands of Hulun Buir city and Xilin Gol League, where the typical grassland type was mainly distributed. Taking the SOC storage under the best grassland quality between 2000 and 2012 as a reference, this study predicted that the SOC potential of grasslands in central and eastern Inner Mongolia in 2012 is 1.38×1012 kg C. This study will contribute to researches on related methods and fundamental database, as well as provide a reference for the protection of grassland ecosystems and the formulation of local policies on sustainable grassland development.
基金supported by National Geological Survey Projects (No. 1212010510903 and 200214100027)
文摘We developed the China Regional Gravity Information System(RGIS) using mixed language programming in Visual Basic,Visual C++,and FORTRAN.The software is based on the MapInfo platform with OLE technology.With this system,we achieve visual data management for the database with spatial geography,geology data and gravity data as well as graphical data editing and data table operations over the whole of China.We are able to perform normalized gravity reduction,gravity and magnetic field transforms,gravity anomaly inversion and interpretation,thematic mapping and so on.