This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an S...This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an SWIPT-aware energy harvesting(EH) relay. We present a power splitting(PS)-based two-way relaying(PS-TWR) protocol by employing the PS receiver architecture. To explore the system sum rate limit with data rate fairness, an optimization problem under total power constraint is formulated. Then, some explicit solutions are derived for the problem. Numerical results show that due to the path loss effect on energy transfer, with the same total available power, PS-TWR losses some system performance compared with traditional non-EH two-way relaying, where at relatively low and relatively high signalto-noise ratio(SNR), the performance loss is relatively small. Another observation is that, in relatively high SNR regime, PS-TWR outperforms time switching-based two-way relaying(TS-TWR) while in relatively low SNR regime TS-TWR outperforms PS-TWR. It is also shown that with individual available power at the two sources, PS-TWR outperforms TS-TWR in both relatively low and high SNR regimes.展开更多
In networked control system (NCS) where control loop is closed over communication network, limited data rate may deteriorate control performance even destabilize the control system. In this paper, performance analysis...In networked control system (NCS) where control loop is closed over communication network, limited data rate may deteriorate control performance even destabilize the control system. In this paper, performance analysis of a typical second-order control system with data rate constraints is conducted, and the concept of critical data rate (CDR) is presented. In order to find the CDR in NCS, an approximate searching method is proposed to guarantee acceptable control performance.展开更多
For rechargeable wireless sensor networks,limited energy storage capacity,dynamic energy supply,low and dynamic duty cycles cause that it is unpractical to maintain a fixed routing path for packets delivery permanentl...For rechargeable wireless sensor networks,limited energy storage capacity,dynamic energy supply,low and dynamic duty cycles cause that it is unpractical to maintain a fixed routing path for packets delivery permanently from a source to destination in a distributed scenario.Therefore,before data delivery,a sensor has to update its waking schedule continuously and share them to its neighbors,which lead to high energy expenditure for reestablishing path links frequently and low efficiency of energy utilization for collecting packets.In this work,we propose the maximum data generation rate routing protocol based on data flow controlling technology.For a sensor,it does not share its waking schedule to its neighbors and cache any waking schedules of other sensors.Hence,the energy consumption for time synchronization,location information and waking schedule shared will be reduced significantly.The saving energy can be used for improving data collection rate.Simulation shows our scheme is efficient to improve packets generation rate in rechargeable wireless sensor networks.展开更多
In the inductively coupled data transmission system of the mooring buoy, the carrier signal frequency of the transmission channel is limited due to the inherent characteristics of the system, resulting in limited chan...In the inductively coupled data transmission system of the mooring buoy, the carrier signal frequency of the transmission channel is limited due to the inherent characteristics of the system, resulting in limited channel bandwidth. The limited channel bandwidth limits the increase in inductively coupled data transmission rate.In order to improve the inductively coupled data transmission rate of mooring buoy as much as possible without damaging the data transmission performance, a new method was proposed in this paper. The method is proposed to improve the data transmission rate by selecting the appropriate carrier signal frequencies based on the principle of maximizing the amplitude value of amplitude-frequency characteristic curve of the system. Research has been done according to this method as follows. Firstly, according to the inductively coupled transmission mooring buoy structure, the inductively coupled data transmission circuit model was established. The binary frequency shift keying(2FSK) digital signal modulation mode was selected. Through theoretical analysis, the relation between the carrier signal frequency and the data transmission performance, the relation between the carrier signal frequency and the 2FSK signal bandwidth were obtained. Secondly, the performance and the bandwidth of the signal transmission were studied for the inherent characteristics of the actual inductively coupled data transmission system. The amplitude-frequency characteristic of the system was analyzed by experiments. By selecting the appropriate carrier signal frequency parameters, an excellent data transmission performance was guaranteed and a large 2FSK signal bandwidth was obtained. Finally, an inductively coupled data transmission rate optimization experiment and a bit error rate analysis experiment were designed and carried out. The results show that the high-speed and reliable data transmission of the system was realized and the rate can reach 100 kbps.展开更多
An expendable conductivity-temperature-depth profiler(XCTD)is one of the most important instruments used to obtain hydrological data,such as temperature and conductivity,and detect ocean depth in a large area.However,...An expendable conductivity-temperature-depth profiler(XCTD)is one of the most important instruments used to obtain hydrological data,such as temperature and conductivity,and detect ocean depth in a large area.However,the XCTD channel provides poor time-varying performance,narrowband,and low signal-to-noise ratio(SNR),which severely restricts the data transmission rate.In contrast to conventional single-carrier modulation techniques,such as amplitude-shift keying and differential phase-shift keying,this article provides a new method,based on orthogonal frequency division multiplexing(OFDM)to enhance the data transmission rate of deep-sea abandoned profilers.We apply the OFDM to enhance the SNR of the XCTD,which is achieved by reducing the data transmission rate of each sub-channel.Moreover,the bandwidth utilization may be improved by increasing the number of subcarriers in a given bandwidth,which enhances the data transmission rate.Based on analysis of the XCTD channel model,OFDM with different parameters such as constellation mapping,number of subcarriers,subcarrier spacing,signal period and cyclic prefix are achieved.To verify the effectiveness of the OFDM,this study investigates the influence of different parameters on the data transmission rate at different noise levels,i.e.,-20 dB and-40 d B.展开更多
This paper focuses on the fast rate fault detection filter (FDF) problem for a class of multirate sampled-data (MSD) systems. A lifting technique is used to convert such an MSD system into a linear time-invariant disc...This paper focuses on the fast rate fault detection filter (FDF) problem for a class of multirate sampled-data (MSD) systems. A lifting technique is used to convert such an MSD system into a linear time-invariant discrete-time one and an unknown input observer (UIO) is considered as FDF to generate residual. The design of FDF is formulated as an H∞ optimization problem and a solvable condition as well as an optimal solution are derived. The causality of the residual generator can be guaranteed so that the fast rate residual can be implemented via inverse lifting. A numerical example is included to demonstrate the feasibility of the obtained results.展开更多
Using Louisiana’s Interstate system, this paper aims to demonstrate how data can be used to evaluate freight movement reliability, economy, and safety of truck freight operations to improve decision-making. Data main...Using Louisiana’s Interstate system, this paper aims to demonstrate how data can be used to evaluate freight movement reliability, economy, and safety of truck freight operations to improve decision-making. Data mainly from the National Performance Management Research Data Set (NPMRDS) and the Louisiana Crash Database were used to analyze Truck Travel Time Reliability Index, commercial vehicle User Delay Costs, and commercial vehicle safety. The results indicate that while Louisiana’s Interstate system remained reliable over the years, some segments were found to be unreliable, which were annually less than 12% of the state’s Interstate system mileage. The User Delay Costs by commercial vehicles on these unreliable segments were, on average, 65.45% of the User Delay Cost by all vehicles on the Interstate highway system between 2016 and 2019, 53.10% between 2020 and 2021, and 70.36% in 2022, which are considerably high. These disproportionate ratios indicate the economic impact of the unreliability of the Interstate system on commercial vehicle operations. Additionally, though the annual crash frequencies remained relatively constant, an increasing proportion of commercial vehicles are involved in crashes, with segments (mileposts) that have high crash frequencies seeming to correspond with locations with recurring congestion on the Interstate highway system. The study highlights the potential of using data to identify areas that need improvement in transportation systems to support better decision-making.展开更多
能源限制是无线传感器网络(wireless sensor networks,WSNs)面临的一系列挑战中的首要问题。如何有效管理和利用有限的能量是设计WSNs路由协议的关键。为此,提出基于改进的灰狼优化算法的WSNs能耗均衡路由(improved grey wolf optimizer...能源限制是无线传感器网络(wireless sensor networks,WSNs)面临的一系列挑战中的首要问题。如何有效管理和利用有限的能量是设计WSNs路由协议的关键。为此,提出基于改进的灰狼优化算法的WSNs能耗均衡路由(improved grey wolf optimizer based energy balancing secure,IGWOEBS)算法,能快速搜索并建立从源节点至汇聚节点的路径,提高数据包传递率,均衡节点能耗。仿真结果表明,相比于动态分区路由算法和多策略灰狼算法,该算法延长了网络生命周期,并提升了数据收集发送传输率。展开更多
The </span></span><span><span><span style="font-family:"">software reliability model is the stochastic model to measure the software <span>reliability quantitatively....The </span></span><span><span><span style="font-family:"">software reliability model is the stochastic model to measure the software <span>reliability quantitatively. A Hazard-Rate Model is </span></span></span></span><span><span><span style="font-family:"">the </span></span></span><span><span><span style="font-family:"">well</span></span></span><span><span><span style="font-family:"">-</span></span></span><span><span><span style="font-family:"">known one as the</span></span></span><span><span><span style="font-family:""> typical software reliability model. We propose Hazard-Rate Models Consider<span>ing Fault Severity Levels (CFSL) for Open Source Software (OSS). The purpose of </span><span>this research is to </span></span></span></span><span><span><span style="font-family:"">make </span></span></span><span><span><span style="font-family:"">the Hazard-Rate Model considering CFSL adapt to</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">baseline hazard function and 2 kinds of faults data in Bug Tracking System <span>(BTS)</span></span></span></span><span><span><span style="font-family:"">,</span></span></span><span><span><span style="font-family:""> <i>i.e.</i>, we use the covariate vectors in Cox proportional Hazard-Rate</span></span></span><span><span><span style="font-family:""> Model. Also, <span>we show the numerical examples by evaluating the performance of our pro</span><span>posed model. As the result, we compare the performance of our model with the</span> Hazard-Rate Model CFSL.展开更多
The aim of this study was to evaluate the impact of the somatic cell count (SCC) levels measured at 28-test-day intervals or pregnancy rate at the first artificial insemination of Holstein Friesian cows. All necessary...The aim of this study was to evaluate the impact of the somatic cell count (SCC) levels measured at 28-test-day intervals or pregnancy rate at the first artificial insemination of Holstein Friesian cows. All necessary information was taken from test day and farm records. Levels of SCC in milk, 30 days before, and 30 days after the first artificial insemination (FAI) date were divided into 4 categories and their interconnection with pregnancy rate (PR) at FAI was evaluated by applying logistic models. A SCC threshold of 150.000 cells/ml of milk was used to differentiate uninfected udders and infected udders of Holstein Friesian cows. A level of SCC > 150.000 cells/ml in milk, and a level of SCC < 150.000 cells/ml before and after FAI respectively were considered udders with new infections. A level of SCC > 150.000 cells/ml in milk before FAI as well as after FAI, was considered chronically infected udders or subclinical intramammary infections (IMI). Data from 792 FAIs from farm and test day records over a 4-year period (2019-2022) were evaluated. The outcome of this study revealed that the risk for low PR at the first AI was increased in cows with infected udders (OR = 1.33, CI 0.99 - 1.78), compared with uninfected udders. Increased levels of SCC after FAI had a negative effect on PR, while before FAI was not affected. To achieve a good PR, mastitis control measures must be fully adopted to a large extent around the first AI.展开更多
基金supported by the National Natural Science Foundation of China ( No . 61602034 )the Beijing Natural Science Foundation (No. 4162049)+2 种基金the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (No. 2014D03)the Fundamental Research Funds for the Central Universities Beijing Jiaotong University (No. 2016JBM015)the NationalHigh Technology Research and Development Program of China (863 Program) (No. 2015AA015702)
文摘This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an SWIPT-aware energy harvesting(EH) relay. We present a power splitting(PS)-based two-way relaying(PS-TWR) protocol by employing the PS receiver architecture. To explore the system sum rate limit with data rate fairness, an optimization problem under total power constraint is formulated. Then, some explicit solutions are derived for the problem. Numerical results show that due to the path loss effect on energy transfer, with the same total available power, PS-TWR losses some system performance compared with traditional non-EH two-way relaying, where at relatively low and relatively high signalto-noise ratio(SNR), the performance loss is relatively small. Another observation is that, in relatively high SNR regime, PS-TWR outperforms time switching-based two-way relaying(TS-TWR) while in relatively low SNR regime TS-TWR outperforms PS-TWR. It is also shown that with individual available power at the two sources, PS-TWR outperforms TS-TWR in both relatively low and high SNR regimes.
基金supported by the Natural Science Foundation of Shanghai (Grant No.06ZR14131)the Key Lab Project of Shanghai(Grant No.08DZ2272400)the Excellent Discipline Head Plan Project of Shanghai (Grant No.08XD14018)
文摘In networked control system (NCS) where control loop is closed over communication network, limited data rate may deteriorate control performance even destabilize the control system. In this paper, performance analysis of a typical second-order control system with data rate constraints is conducted, and the concept of critical data rate (CDR) is presented. In order to find the CDR in NCS, an approximate searching method is proposed to guarantee acceptable control performance.
基金This work was supported by The National Natural Science Fund of China(Grant No.31670554)The Natural Science Foundation of Jiangsu Province of China(Grant No.BK20161527)+1 种基金We also received three Projects Funded by The Project funded by China Postdoctoral Science Foundation(Grant Nos.2018T110505,2017M611828)The Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions.The authors wish to express their appreciation to the reviewers for their helpful suggestions which greatly improved the presentation of this paper.
文摘For rechargeable wireless sensor networks,limited energy storage capacity,dynamic energy supply,low and dynamic duty cycles cause that it is unpractical to maintain a fixed routing path for packets delivery permanently from a source to destination in a distributed scenario.Therefore,before data delivery,a sensor has to update its waking schedule continuously and share them to its neighbors,which lead to high energy expenditure for reestablishing path links frequently and low efficiency of energy utilization for collecting packets.In this work,we propose the maximum data generation rate routing protocol based on data flow controlling technology.For a sensor,it does not share its waking schedule to its neighbors and cache any waking schedules of other sensors.Hence,the energy consumption for time synchronization,location information and waking schedule shared will be reduced significantly.The saving energy can be used for improving data collection rate.Simulation shows our scheme is efficient to improve packets generation rate in rechargeable wireless sensor networks.
基金supported by the National Natural Science Foundation of China [Grant number 61733012]Qingdao Ocean Engineering and Technology Think Tank Joint Fund Project [Grant number 20190131-2]the Shandong Provincial Natural Science Fund Project [Grant number ZR2017MEE072]。
文摘In the inductively coupled data transmission system of the mooring buoy, the carrier signal frequency of the transmission channel is limited due to the inherent characteristics of the system, resulting in limited channel bandwidth. The limited channel bandwidth limits the increase in inductively coupled data transmission rate.In order to improve the inductively coupled data transmission rate of mooring buoy as much as possible without damaging the data transmission performance, a new method was proposed in this paper. The method is proposed to improve the data transmission rate by selecting the appropriate carrier signal frequencies based on the principle of maximizing the amplitude value of amplitude-frequency characteristic curve of the system. Research has been done according to this method as follows. Firstly, according to the inductively coupled transmission mooring buoy structure, the inductively coupled data transmission circuit model was established. The binary frequency shift keying(2FSK) digital signal modulation mode was selected. Through theoretical analysis, the relation between the carrier signal frequency and the data transmission performance, the relation between the carrier signal frequency and the 2FSK signal bandwidth were obtained. Secondly, the performance and the bandwidth of the signal transmission were studied for the inherent characteristics of the actual inductively coupled data transmission system. The amplitude-frequency characteristic of the system was analyzed by experiments. By selecting the appropriate carrier signal frequency parameters, an excellent data transmission performance was guaranteed and a large 2FSK signal bandwidth was obtained. Finally, an inductively coupled data transmission rate optimization experiment and a bit error rate analysis experiment were designed and carried out. The results show that the high-speed and reliable data transmission of the system was realized and the rate can reach 100 kbps.
基金supported by the National Key Research and Development Program of China (No. 2016 YFC1400400)the Marine Economic Innovation and Development Demonstration Project in Binhai New Area (No. 1723434C4114194)
文摘An expendable conductivity-temperature-depth profiler(XCTD)is one of the most important instruments used to obtain hydrological data,such as temperature and conductivity,and detect ocean depth in a large area.However,the XCTD channel provides poor time-varying performance,narrowband,and low signal-to-noise ratio(SNR),which severely restricts the data transmission rate.In contrast to conventional single-carrier modulation techniques,such as amplitude-shift keying and differential phase-shift keying,this article provides a new method,based on orthogonal frequency division multiplexing(OFDM)to enhance the data transmission rate of deep-sea abandoned profilers.We apply the OFDM to enhance the SNR of the XCTD,which is achieved by reducing the data transmission rate of each sub-channel.Moreover,the bandwidth utilization may be improved by increasing the number of subcarriers in a given bandwidth,which enhances the data transmission rate.Based on analysis of the XCTD channel model,OFDM with different parameters such as constellation mapping,number of subcarriers,subcarrier spacing,signal period and cyclic prefix are achieved.To verify the effectiveness of the OFDM,this study investigates the influence of different parameters on the data transmission rate at different noise levels,i.e.,-20 dB and-40 d B.
基金Supported by National Natural Science Foundation of P. R. China (60374021)the Natural Science Foundation of Shandong Province (Y2002G05)the Youth Scientists Foundation of Shandong Province (03BS091, 05BS01007) and Education Ministry Foundation of P. R. China (20050422036)
文摘This paper focuses on the fast rate fault detection filter (FDF) problem for a class of multirate sampled-data (MSD) systems. A lifting technique is used to convert such an MSD system into a linear time-invariant discrete-time one and an unknown input observer (UIO) is considered as FDF to generate residual. The design of FDF is formulated as an H∞ optimization problem and a solvable condition as well as an optimal solution are derived. The causality of the residual generator can be guaranteed so that the fast rate residual can be implemented via inverse lifting. A numerical example is included to demonstrate the feasibility of the obtained results.
文摘Using Louisiana’s Interstate system, this paper aims to demonstrate how data can be used to evaluate freight movement reliability, economy, and safety of truck freight operations to improve decision-making. Data mainly from the National Performance Management Research Data Set (NPMRDS) and the Louisiana Crash Database were used to analyze Truck Travel Time Reliability Index, commercial vehicle User Delay Costs, and commercial vehicle safety. The results indicate that while Louisiana’s Interstate system remained reliable over the years, some segments were found to be unreliable, which were annually less than 12% of the state’s Interstate system mileage. The User Delay Costs by commercial vehicles on these unreliable segments were, on average, 65.45% of the User Delay Cost by all vehicles on the Interstate highway system between 2016 and 2019, 53.10% between 2020 and 2021, and 70.36% in 2022, which are considerably high. These disproportionate ratios indicate the economic impact of the unreliability of the Interstate system on commercial vehicle operations. Additionally, though the annual crash frequencies remained relatively constant, an increasing proportion of commercial vehicles are involved in crashes, with segments (mileposts) that have high crash frequencies seeming to correspond with locations with recurring congestion on the Interstate highway system. The study highlights the potential of using data to identify areas that need improvement in transportation systems to support better decision-making.
文摘能源限制是无线传感器网络(wireless sensor networks,WSNs)面临的一系列挑战中的首要问题。如何有效管理和利用有限的能量是设计WSNs路由协议的关键。为此,提出基于改进的灰狼优化算法的WSNs能耗均衡路由(improved grey wolf optimizer based energy balancing secure,IGWOEBS)算法,能快速搜索并建立从源节点至汇聚节点的路径,提高数据包传递率,均衡节点能耗。仿真结果表明,相比于动态分区路由算法和多策略灰狼算法,该算法延长了网络生命周期,并提升了数据收集发送传输率。
文摘The </span></span><span><span><span style="font-family:"">software reliability model is the stochastic model to measure the software <span>reliability quantitatively. A Hazard-Rate Model is </span></span></span></span><span><span><span style="font-family:"">the </span></span></span><span><span><span style="font-family:"">well</span></span></span><span><span><span style="font-family:"">-</span></span></span><span><span><span style="font-family:"">known one as the</span></span></span><span><span><span style="font-family:""> typical software reliability model. We propose Hazard-Rate Models Consider<span>ing Fault Severity Levels (CFSL) for Open Source Software (OSS). The purpose of </span><span>this research is to </span></span></span></span><span><span><span style="font-family:"">make </span></span></span><span><span><span style="font-family:"">the Hazard-Rate Model considering CFSL adapt to</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:"">baseline hazard function and 2 kinds of faults data in Bug Tracking System <span>(BTS)</span></span></span></span><span><span><span style="font-family:"">,</span></span></span><span><span><span style="font-family:""> <i>i.e.</i>, we use the covariate vectors in Cox proportional Hazard-Rate</span></span></span><span><span><span style="font-family:""> Model. Also, <span>we show the numerical examples by evaluating the performance of our pro</span><span>posed model. As the result, we compare the performance of our model with the</span> Hazard-Rate Model CFSL.
文摘The aim of this study was to evaluate the impact of the somatic cell count (SCC) levels measured at 28-test-day intervals or pregnancy rate at the first artificial insemination of Holstein Friesian cows. All necessary information was taken from test day and farm records. Levels of SCC in milk, 30 days before, and 30 days after the first artificial insemination (FAI) date were divided into 4 categories and their interconnection with pregnancy rate (PR) at FAI was evaluated by applying logistic models. A SCC threshold of 150.000 cells/ml of milk was used to differentiate uninfected udders and infected udders of Holstein Friesian cows. A level of SCC > 150.000 cells/ml in milk, and a level of SCC < 150.000 cells/ml before and after FAI respectively were considered udders with new infections. A level of SCC > 150.000 cells/ml in milk before FAI as well as after FAI, was considered chronically infected udders or subclinical intramammary infections (IMI). Data from 792 FAIs from farm and test day records over a 4-year period (2019-2022) were evaluated. The outcome of this study revealed that the risk for low PR at the first AI was increased in cows with infected udders (OR = 1.33, CI 0.99 - 1.78), compared with uninfected udders. Increased levels of SCC after FAI had a negative effect on PR, while before FAI was not affected. To achieve a good PR, mastitis control measures must be fully adopted to a large extent around the first AI.