A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,wh...A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,which is implemented as an extended reservoir-sampling algorithm.A skip factor based on the change ratio of data-values is introduced to describe the distribution characteristics of data-values adaptively.The second step of this method is to partition the fluxes of data streams averagely,which is implemented with two alternative equal-depth histogram generating algorithms that fit the different cases:one for incremental maintenance based on heuristics and the other for periodical updates to generate an approximate partition vector.The experimental results on actual data prove that the method is efficient,practical and suitable for time-varying data streams processing.展开更多
In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and...In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and proves that only sources or destinations with a lot of flows can be sampled probabilistically using the SDSD algorithm. The SDSD algorithm uses both the IP table and the flow bloom filter (BF) data structures to maintain the IP and flow information. The IP table is used to judge whether an IP address has been recorded. If the IP exists, then all its subsequent flows will be recorded into the flow BF; otherwise, the IP flow is sampled. This paper also analyzes the accuracy and memory requirements of the SDSD algorithm , and tests them using the CERNET trace. The theoretical analysis and experimental tests demonstrate that the most relative errors of the super points estimated by the SDSD algorithm are less than 5%, whereas the results of other algorithms are about 10%. Because of the BF structure, the SDSD algorithm is also better than previous algorithms in terms of memory consumption.展开更多
Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recogni...Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases.展开更多
China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a...China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data.展开更多
For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic...For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic minority over-sampling technique(SMOTE) is specifically designed for learning from imbalanced datasets, generating synthetic minority class examples by interpolating between minority class examples nearby. However, the SMOTE encounters the overgeneralization problem. The densitybased spatial clustering of applications with noise(DBSCAN) is not rigorous when dealing with the samples near the borderline.We optimize the DBSCAN algorithm for this problem to make clustering more reasonable. This paper integrates the optimized DBSCAN and SMOTE, and proposes a density-based synthetic minority over-sampling technique(DSMOTE). First, the optimized DBSCAN is used to divide the samples of the minority class into three groups, including core samples, borderline samples and noise samples, and then the noise samples of minority class is removed to synthesize more effective samples. In order to make full use of the information of core samples and borderline samples,different strategies are used to over-sample core samples and borderline samples. Experiments show that DSMOTE can achieve better results compared with SMOTE and Borderline-SMOTE in terms of precision, recall and F-value.展开更多
Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the ch...Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the characteristic of the material is highly nonlinear in nature,as is common in biological tissue.In this work,we identify unknown material properties in continuum solid mechanics via physics-informed neural networks(PINNs).To improve the accuracy and efficiency of PINNs,we develop efficient strategies to nonuniformly sample observational data.We also investigate different approaches to enforce Dirichlet-type boundary conditions(BCs)as soft or hard constraints.Finally,we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space.The estimated material parameters achieve relative errors of less than 1%.As such,this work is relevant to diverse applications,including optimizing structural integrity and developing novel materials.展开更多
The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of the fracability of tight formations.Measuring mineralogical...The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of the fracability of tight formations.Measuring mineralogical components in rocks is expensive and time consuming.However,the basic well log curves are not well correlated with BI so correlation-based,machine-learning methods are not able to derive highly accurate BI predictions using such data.A correlation-free,optimized data-matching algorithm is configured to predict BI on a supervised basis from well log and core data available from two published wells in the Lower Barnett Shale Formation (Texas).This transparent open box (TOB) algorithm matches data records by calculating the sum of squared errors between their variables and selecting the best matches as those with the minimum squared errors.It then applies optimizers to adjust weights applied to individual variable errors to minimize the root mean square error (RMSE)between calculated and predicted (BI).The prediction accuracy achieved by TOB using just five well logs (Gr,ρb,Ns,Rs,Dt) to predict BI is dependent on the density of data records sampled.At a sampling density of about one sample per 0.5 ft BI is predicted with RMSE~0.056 and R^(2)~0.790.At a sampling density of about one sample per0.1 ft BI is predicted with RMSE~0.008 and R^(2)~0.995.Adding a stratigraphic height index as an additional (sixth)input variable method improves BI prediction accuracy to RMSE~0.003 and R^(2)~0.999 for the two wells with only 1 record in 10,000 yielding a BI prediction error of>±0.1.The model has the potential to be applied in an unsupervised basis to predict BI from basic well log data in surrounding wells lacking mineralogical measurements but with similar lithofacies and burial histories.The method could also be extended to predict elastic rock properties in and seismic attributes from wells and seismic data to improve the precision of brittleness index and fracability mapping spatially.展开更多
Objective To develop methods for determining a suitable sample size for bioequivalence assessment of generic topical ophthalmic drugs using crossover design with serial sampling schemes.Methods The power functions of ...Objective To develop methods for determining a suitable sample size for bioequivalence assessment of generic topical ophthalmic drugs using crossover design with serial sampling schemes.Methods The power functions of the Fieller-type confidence interval and the asymptotic confidence interval in crossover designs with serial-sampling data are here derived.Simulation studies were conducted to evaluate the derived power functions.Results Simulation studies show that two power functions can provide precise power estimates when normality assumptions are satisfied and yield conservative estimates of power in cases when data are log-normally distributed.The intra-correlation showed a positive correlation with the power of the bioequivalence test.When the expected ratio of the AUCs was less than or equal to 1, the power of the Fieller-type confidence interval was larger than the asymptotic confidence interval.If the expected ratio of the AUCs was larger than 1, the asymptotic confidence interval had greater power.Sample size can be calculated through numerical iteration with the derived power functions.Conclusion The Fieller-type power function and the asymptotic power function can be used to determine sample sizes of crossover trials for bioequivalence assessment of topical ophthalmic drugs.展开更多
This paper is concerned with a novel Lyapunovlike functional approach to the stability of sampled-data systems with variable sampling periods. The Lyapunov-like functional has four striking characters compared to usua...This paper is concerned with a novel Lyapunovlike functional approach to the stability of sampled-data systems with variable sampling periods. The Lyapunov-like functional has four striking characters compared to usual ones. First, it is time-dependent. Second, it may be discontinuous. Third, not every term of it is required to be positive definite. Fourth, the Lyapunov functional includes not only the state and the sampled state but also the integral of the state. By using a recently reported inequality to estimate the derivative of this Lyapunov functional, a sampled-interval-dependent stability criterion with reduced conservatism is obtained. The stability criterion is further extended to sampled-data systems with polytopic uncertainties. Finally, three examples are given to illustrate the reduced conservatism of the stability criteria.展开更多
The world of information technology is more than ever being flooded with huge amounts of data,nearly 2.5 quintillion bytes every day.This large stream of data is called big data,and the amount is increasing each day.T...The world of information technology is more than ever being flooded with huge amounts of data,nearly 2.5 quintillion bytes every day.This large stream of data is called big data,and the amount is increasing each day.This research uses a technique called sampling,which selects a representative subset of the data points,manipulates and analyzes this subset to identify patterns and trends in the larger dataset being examined,and finally,creates models.Sampling uses a small proportion of the original data for analysis and model training,so that it is relatively faster while maintaining data integrity and achieving accurate results.Two deep neural networks,AlexNet and DenseNet,were used in this research to test two sampling techniques,namely sampling with replacement and reservoir sampling.The dataset used for this research was divided into three classes:acceptable,flagged as easy,and flagged as hard.The base models were trained with the whole dataset,whereas the other models were trained on 50%of the original dataset.There were four combinations of model and sampling technique.The F-measure for the AlexNet model was 0.807 while that for the DenseNet model was 0.808.Combination 1 was the AlexNet model and sampling with replacement,achieving an average F-measure of 0.8852.Combination 3 was the AlexNet model and reservoir sampling.It had an average F-measure of 0.8545.Combination 2 was the DenseNet model and sampling with replacement,achieving an average F-measure of 0.8017.Finally,combination 4 was the DenseNet model and reservoir sampling.It had an average F-measure of 0.8111.Overall,we conclude that both models trained on a sampled dataset gave equal or better results compared to the base models,which used the whole dataset.展开更多
Fourier transform is a basis of the analysis. This paper presents a kind ofmethod of minimum sampling data determined profile of the inverted object ininverse scattering.
In this paper, consensus problems of heterogeneous multi-agent systems based on sampled data with a small sampling delay are considered. First, a consensus protocol based on sampled data with a small sampling delay fo...In this paper, consensus problems of heterogeneous multi-agent systems based on sampled data with a small sampling delay are considered. First, a consensus protocol based on sampled data with a small sampling delay for heterogeneous multi-agent systems is proposed. Then, the algebra graph theory, the matrix method, the stability theory of linear systems, and some other techniques are employed to derive the necessary and sufficient conditions guaranteeing heterogeneous multi-agent systems to asymptotically achieve the stationary consensus. Finally, simulations are performed to demonstrate the correctness of the theoretical results.展开更多
The conventional data envelopment analysis (DEA) measures the relative efficiencies of a set of decision making units with exact values of inputs and outputs. In real-world prob- lems, however, inputs and outputs ty...The conventional data envelopment analysis (DEA) measures the relative efficiencies of a set of decision making units with exact values of inputs and outputs. In real-world prob- lems, however, inputs and outputs typically have some levels of fuzziness. To analyze a decision making unit (DMU) with fuzzy input/output data, previous studies provided the fuzzy DEA model and proposed an associated evaluating approach. Nonetheless, numerous deficiencies must still be improved, including the α- cut approaches, types of fuzzy numbers, and ranking techniques. Moreover, a fuzzy sample DMU still cannot be evaluated for the Fuzzy DEA model. Therefore, this paper proposes a fuzzy DEA model based on sample decision making unit (FSDEA). Five eval- uation approaches and the related algorithm and ranking methods are provided to test the fuzzy sample DMU of the FSDEA model. A numerical experiment is used to demonstrate and compare the results with those obtained using alternative approaches.展开更多
The spatial estimation for soil properties was improved and sampling intensities also decreased in terms of incorporated auxiliary data. In this study, kriging and two interpolation methods were proven well to estimat...The spatial estimation for soil properties was improved and sampling intensities also decreased in terms of incorporated auxiliary data. In this study, kriging and two interpolation methods were proven well to estimate auxiliary variables: cokriging and regression-kriging, and using the salinity data from the first two stages as auxiliary variables, the methods both improved the interpolation of soil salinity in coastal saline land. The prediction accuracy of the three methods was observed under different sampling density of the target variable by comparison with another group of 80 validation sample points, from which the root-mean-square error (RMSE) and correlation coefficient (r) between the predicted and measured values were calculated. The results showed, with the help of auxiliary data, whatever the sample size of the target variable may be, cokriging and regression-kriging performed better than ordinary kriging. Moreover, regression-kriging produced on average more accurate predictions than cokriging. Compared with the kriging results, cokriging improved the estimations by reducing RMSE from 23.3 to 29% and increasing r from 16.6 to 25.5%, regression-kriging improved the estimations by reducing RMSE from 25 to 41.5% and increasing r from 16.8 to 27.2%. Therefore, regression-kriging shows promise for improved prediction for soil salinity and reduction of soil sampling intensity considerably while maintaining high prediction accuracy. Moreover, in regression-kriging, the regression model can have any form, such as generalized linear models, non-linear models or tree-based models, which provide a possibility to include more ancillary variables.展开更多
Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is di...Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.展开更多
Volatile nitrosamines (VNAs) are a group of compounds classified as probable (group 2A) and possible (group 2B) carcinogens in humans. Along with certain foods and contaminated drinking water, VNAs are detected at hig...Volatile nitrosamines (VNAs) are a group of compounds classified as probable (group 2A) and possible (group 2B) carcinogens in humans. Along with certain foods and contaminated drinking water, VNAs are detected at high levels in tobacco products and in both mainstream and side-stream smoke. Our laboratory monitors six urinary VNAs—N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), and N-nitrosomorpholine (NMOR)—using isotope dilution GC-MS/ MS (QQQ) for large population studies such as the National Health and Nutrition Examination Survey (NHANES). In this paper, we report for the first time a new automated sample preparation method to more efficiently quantitate these VNAs. Automation is done using Hamilton STAR<sup>TM</sup> and Caliper Staccato<sup>TM</sup> workstations. This new automated method reduces sample preparation time from 4 hours to 2.5 hours while maintaining precision (inter-run CV < 10%) and accuracy (85% - 111%). More importantly this method increases sample throughput while maintaining a low limit of detection (<10 pg/mL) for all analytes. A streamlined sample data flow was created in parallel to the automated method, in which samples can be tracked from receiving to final LIMs output with minimal human intervention, further minimizing human error in the sample preparation process. This new automated method and the sample data flow are currently applied in bio-monitoring of VNAs in the US non-institutionalized population NHANES 2013-2014 cycle.展开更多
The lifting technique is now the most popular tool for dealing with sampled-data controlsystems. However, for the robust stability problem the system norm is not preserved by the liftingas expected. And the result is ...The lifting technique is now the most popular tool for dealing with sampled-data controlsystems. However, for the robust stability problem the system norm is not preserved by the liftingas expected. And the result is generally conservative under the small gain condition. The reason forthe norm di?erence by the lifting is that the state transition operator in the lifted system is zero inthis case. A new approach to the robust stability analysis is proposed. It is to use an equivalentdiscrete-time uncertainty to replace the continuous-time uncertainty. Then the general discretizedmethod can be used for the robust stability problem, and it is not conservative. Examples are givenin the paper.展开更多
基金The High Technology Research Plan of Jiangsu Prov-ince (No.BG2004034)the Foundation of Graduate Creative Program ofJiangsu Province (No.xm04-36).
文摘A novel data streams partitioning method is proposed to resolve problems of range-aggregation continuous queries over parallel streams for power industry.The first step of this method is to parallel sample the data,which is implemented as an extended reservoir-sampling algorithm.A skip factor based on the change ratio of data-values is introduced to describe the distribution characteristics of data-values adaptively.The second step of this method is to partition the fluxes of data streams averagely,which is implemented with two alternative equal-depth histogram generating algorithms that fit the different cases:one for incremental maintenance based on heuristics and the other for periodical updates to generate an approximate partition vector.The experimental results on actual data prove that the method is efficient,practical and suitable for time-varying data streams processing.
基金The National Basic Research Program of China(973Program)(No.2009CB320505)the Natural Science Foundation of Jiangsu Province(No. BK2008288)+1 种基金the Excellent Young Teachers Program of Southeast University(No.4009001018)the Open Research Program of Key Laboratory of Computer Network of Guangdong Province (No. CCNL200706)
文摘In order to improve the precision of super point detection and control measurement resource consumption, this paper proposes a super point detection method based on sampling and data streaming algorithms (SDSD), and proves that only sources or destinations with a lot of flows can be sampled probabilistically using the SDSD algorithm. The SDSD algorithm uses both the IP table and the flow bloom filter (BF) data structures to maintain the IP and flow information. The IP table is used to judge whether an IP address has been recorded. If the IP exists, then all its subsequent flows will be recorded into the flow BF; otherwise, the IP flow is sampled. This paper also analyzes the accuracy and memory requirements of the SDSD algorithm , and tests them using the CERNET trace. The theoretical analysis and experimental tests demonstrate that the most relative errors of the super points estimated by the SDSD algorithm are less than 5%, whereas the results of other algorithms are about 10%. Because of the BF structure, the SDSD algorithm is also better than previous algorithms in terms of memory consumption.
基金Supported by the Open Researches Fund Program of L IESMARS(WKL(0 0 ) 0 30 2 )
文摘Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recognition, image processing, and etc. We combine sampling technique with DBSCAN algorithm to cluster large spatial databases, and two sampling based DBSCAN (SDBSCAN) algorithms are developed. One algorithm introduces sampling technique inside DBSCAN, and the other uses sampling procedure outside DBSCAN. Experimental results demonstrate that our algorithms are effective and efficient in clustering large scale spatial databases.
文摘China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data.
基金supported by the National Key Research and Development Program of China(2018YFB1003700)the Scientific and Technological Support Project(Society)of Jiangsu Province(BE2016776)+2 种基金the“333” project of Jiangsu Province(BRA2017228 BRA2017401)the Talent Project in Six Fields of Jiangsu Province(2015-JNHB-012)
文摘For imbalanced datasets, the focus of classification is to identify samples of the minority class. The performance of current data mining algorithms is not good enough for processing imbalanced datasets. The synthetic minority over-sampling technique(SMOTE) is specifically designed for learning from imbalanced datasets, generating synthetic minority class examples by interpolating between minority class examples nearby. However, the SMOTE encounters the overgeneralization problem. The densitybased spatial clustering of applications with noise(DBSCAN) is not rigorous when dealing with the samples near the borderline.We optimize the DBSCAN algorithm for this problem to make clustering more reasonable. This paper integrates the optimized DBSCAN and SMOTE, and proposes a density-based synthetic minority over-sampling technique(DSMOTE). First, the optimized DBSCAN is used to divide the samples of the minority class into three groups, including core samples, borderline samples and noise samples, and then the noise samples of minority class is removed to synthesize more effective samples. In order to make full use of the information of core samples and borderline samples,different strategies are used to over-sample core samples and borderline samples. Experiments show that DSMOTE can achieve better results compared with SMOTE and Borderline-SMOTE in terms of precision, recall and F-value.
基金funded by the Cora Topolewski Cardiac Research Fund at the Children’s Hospital of Philadelphia(CHOP)the Pediatric Valve Center Frontier Program at CHOP+4 种基金the Additional Ventures Single Ventricle Research Fund Expansion Awardthe National Institutes of Health(USA)supported by the program(Nos.NHLBI T32 HL007915 and NIH R01 HL153166)supported by the program(No.NIH R01 HL153166)supported by the U.S.Department of Energy(No.DE-SC0022953)。
文摘Material identification is critical for understanding the relationship between mechanical properties and the associated mechanical functions.However,material identification is a challenging task,especially when the characteristic of the material is highly nonlinear in nature,as is common in biological tissue.In this work,we identify unknown material properties in continuum solid mechanics via physics-informed neural networks(PINNs).To improve the accuracy and efficiency of PINNs,we develop efficient strategies to nonuniformly sample observational data.We also investigate different approaches to enforce Dirichlet-type boundary conditions(BCs)as soft or hard constraints.Finally,we apply the proposed methods to a diverse set of time-dependent and time-independent solid mechanic examples that span linear elastic and hyperelastic material space.The estimated material parameters achieve relative errors of less than 1%.As such,this work is relevant to diverse applications,including optimizing structural integrity and developing novel materials.
文摘The capability of accurately predicting mineralogical brittleness index (BI) from basic suites of well logs is desirable as it provides a useful indicator of the fracability of tight formations.Measuring mineralogical components in rocks is expensive and time consuming.However,the basic well log curves are not well correlated with BI so correlation-based,machine-learning methods are not able to derive highly accurate BI predictions using such data.A correlation-free,optimized data-matching algorithm is configured to predict BI on a supervised basis from well log and core data available from two published wells in the Lower Barnett Shale Formation (Texas).This transparent open box (TOB) algorithm matches data records by calculating the sum of squared errors between their variables and selecting the best matches as those with the minimum squared errors.It then applies optimizers to adjust weights applied to individual variable errors to minimize the root mean square error (RMSE)between calculated and predicted (BI).The prediction accuracy achieved by TOB using just five well logs (Gr,ρb,Ns,Rs,Dt) to predict BI is dependent on the density of data records sampled.At a sampling density of about one sample per 0.5 ft BI is predicted with RMSE~0.056 and R^(2)~0.790.At a sampling density of about one sample per0.1 ft BI is predicted with RMSE~0.008 and R^(2)~0.995.Adding a stratigraphic height index as an additional (sixth)input variable method improves BI prediction accuracy to RMSE~0.003 and R^(2)~0.999 for the two wells with only 1 record in 10,000 yielding a BI prediction error of>±0.1.The model has the potential to be applied in an unsupervised basis to predict BI from basic well log data in surrounding wells lacking mineralogical measurements but with similar lithofacies and burial histories.The method could also be extended to predict elastic rock properties in and seismic attributes from wells and seismic data to improve the precision of brittleness index and fracability mapping spatially.
基金supported by sub-project of National Major Scientific and Technological Special Project of China for ‘Significant New Drugs Development’[2015ZX09501008-004]
文摘Objective To develop methods for determining a suitable sample size for bioequivalence assessment of generic topical ophthalmic drugs using crossover design with serial sampling schemes.Methods The power functions of the Fieller-type confidence interval and the asymptotic confidence interval in crossover designs with serial-sampling data are here derived.Simulation studies were conducted to evaluate the derived power functions.Results Simulation studies show that two power functions can provide precise power estimates when normality assumptions are satisfied and yield conservative estimates of power in cases when data are log-normally distributed.The intra-correlation showed a positive correlation with the power of the bioequivalence test.When the expected ratio of the AUCs was less than or equal to 1, the power of the Fieller-type confidence interval was larger than the asymptotic confidence interval.If the expected ratio of the AUCs was larger than 1, the asymptotic confidence interval had greater power.Sample size can be calculated through numerical iteration with the derived power functions.Conclusion The Fieller-type power function and the asymptotic power function can be used to determine sample sizes of crossover trials for bioequivalence assessment of topical ophthalmic drugs.
基金supported by the National Natural Science Foundation of China(61374090)the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Provincethe Taishan Scholarship Project of Shandong Province
文摘This paper is concerned with a novel Lyapunovlike functional approach to the stability of sampled-data systems with variable sampling periods. The Lyapunov-like functional has four striking characters compared to usual ones. First, it is time-dependent. Second, it may be discontinuous. Third, not every term of it is required to be positive definite. Fourth, the Lyapunov functional includes not only the state and the sampled state but also the integral of the state. By using a recently reported inequality to estimate the derivative of this Lyapunov functional, a sampled-interval-dependent stability criterion with reduced conservatism is obtained. The stability criterion is further extended to sampled-data systems with polytopic uncertainties. Finally, three examples are given to illustrate the reduced conservatism of the stability criteria.
文摘The world of information technology is more than ever being flooded with huge amounts of data,nearly 2.5 quintillion bytes every day.This large stream of data is called big data,and the amount is increasing each day.This research uses a technique called sampling,which selects a representative subset of the data points,manipulates and analyzes this subset to identify patterns and trends in the larger dataset being examined,and finally,creates models.Sampling uses a small proportion of the original data for analysis and model training,so that it is relatively faster while maintaining data integrity and achieving accurate results.Two deep neural networks,AlexNet and DenseNet,were used in this research to test two sampling techniques,namely sampling with replacement and reservoir sampling.The dataset used for this research was divided into three classes:acceptable,flagged as easy,and flagged as hard.The base models were trained with the whole dataset,whereas the other models were trained on 50%of the original dataset.There were four combinations of model and sampling technique.The F-measure for the AlexNet model was 0.807 while that for the DenseNet model was 0.808.Combination 1 was the AlexNet model and sampling with replacement,achieving an average F-measure of 0.8852.Combination 3 was the AlexNet model and reservoir sampling.It had an average F-measure of 0.8545.Combination 2 was the DenseNet model and sampling with replacement,achieving an average F-measure of 0.8017.Finally,combination 4 was the DenseNet model and reservoir sampling.It had an average F-measure of 0.8111.Overall,we conclude that both models trained on a sampled dataset gave equal or better results compared to the base models,which used the whole dataset.
文摘Fourier transform is a basis of the analysis. This paper presents a kind ofmethod of minimum sampling data determined profile of the inverted object ininverse scattering.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,61374047,61203126,and 61104092)the Humanities and Social Sciences Youth Funds of the Ministry of Education,China(Grant No.12YJCZH218)
文摘In this paper, consensus problems of heterogeneous multi-agent systems based on sampled data with a small sampling delay are considered. First, a consensus protocol based on sampled data with a small sampling delay for heterogeneous multi-agent systems is proposed. Then, the algebra graph theory, the matrix method, the stability theory of linear systems, and some other techniques are employed to derive the necessary and sufficient conditions guaranteeing heterogeneous multi-agent systems to asymptotically achieve the stationary consensus. Finally, simulations are performed to demonstrate the correctness of the theoretical results.
基金supported by the National Natural Science Foundation of China (70961005)211 Project for Postgraduate Student Program of Inner Mongolia University+1 种基金National Natural Science Foundation of Inner Mongolia (2010Zd342011MS1002)
文摘The conventional data envelopment analysis (DEA) measures the relative efficiencies of a set of decision making units with exact values of inputs and outputs. In real-world prob- lems, however, inputs and outputs typically have some levels of fuzziness. To analyze a decision making unit (DMU) with fuzzy input/output data, previous studies provided the fuzzy DEA model and proposed an associated evaluating approach. Nonetheless, numerous deficiencies must still be improved, including the α- cut approaches, types of fuzzy numbers, and ranking techniques. Moreover, a fuzzy sample DMU still cannot be evaluated for the Fuzzy DEA model. Therefore, this paper proposes a fuzzy DEA model based on sample decision making unit (FSDEA). Five eval- uation approaches and the related algorithm and ranking methods are provided to test the fuzzy sample DMU of the FSDEA model. A numerical experiment is used to demonstrate and compare the results with those obtained using alternative approaches.
基金the National Natural Science Foundation of China (40571066, 40001008)the Postdoctoral Science Foundation of China (20060401048) the Key Program of Science and Technology Bureau of Zhejiang Province, China 030523).
文摘The spatial estimation for soil properties was improved and sampling intensities also decreased in terms of incorporated auxiliary data. In this study, kriging and two interpolation methods were proven well to estimate auxiliary variables: cokriging and regression-kriging, and using the salinity data from the first two stages as auxiliary variables, the methods both improved the interpolation of soil salinity in coastal saline land. The prediction accuracy of the three methods was observed under different sampling density of the target variable by comparison with another group of 80 validation sample points, from which the root-mean-square error (RMSE) and correlation coefficient (r) between the predicted and measured values were calculated. The results showed, with the help of auxiliary data, whatever the sample size of the target variable may be, cokriging and regression-kriging performed better than ordinary kriging. Moreover, regression-kriging produced on average more accurate predictions than cokriging. Compared with the kriging results, cokriging improved the estimations by reducing RMSE from 23.3 to 29% and increasing r from 16.6 to 25.5%, regression-kriging improved the estimations by reducing RMSE from 25 to 41.5% and increasing r from 16.8 to 27.2%. Therefore, regression-kriging shows promise for improved prediction for soil salinity and reduction of soil sampling intensity considerably while maintaining high prediction accuracy. Moreover, in regression-kriging, the regression model can have any form, such as generalized linear models, non-linear models or tree-based models, which provide a possibility to include more ancillary variables.
文摘Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.
文摘Volatile nitrosamines (VNAs) are a group of compounds classified as probable (group 2A) and possible (group 2B) carcinogens in humans. Along with certain foods and contaminated drinking water, VNAs are detected at high levels in tobacco products and in both mainstream and side-stream smoke. Our laboratory monitors six urinary VNAs—N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), and N-nitrosomorpholine (NMOR)—using isotope dilution GC-MS/ MS (QQQ) for large population studies such as the National Health and Nutrition Examination Survey (NHANES). In this paper, we report for the first time a new automated sample preparation method to more efficiently quantitate these VNAs. Automation is done using Hamilton STAR<sup>TM</sup> and Caliper Staccato<sup>TM</sup> workstations. This new automated method reduces sample preparation time from 4 hours to 2.5 hours while maintaining precision (inter-run CV < 10%) and accuracy (85% - 111%). More importantly this method increases sample throughput while maintaining a low limit of detection (<10 pg/mL) for all analytes. A streamlined sample data flow was created in parallel to the automated method, in which samples can be tracked from receiving to final LIMs output with minimal human intervention, further minimizing human error in the sample preparation process. This new automated method and the sample data flow are currently applied in bio-monitoring of VNAs in the US non-institutionalized population NHANES 2013-2014 cycle.
文摘The lifting technique is now the most popular tool for dealing with sampled-data controlsystems. However, for the robust stability problem the system norm is not preserved by the liftingas expected. And the result is generally conservative under the small gain condition. The reason forthe norm di?erence by the lifting is that the state transition operator in the lifted system is zero inthis case. A new approach to the robust stability analysis is proposed. It is to use an equivalentdiscrete-time uncertainty to replace the continuous-time uncertainty. Then the general discretizedmethod can be used for the robust stability problem, and it is not conservative. Examples are givenin the paper.