A vast amount of data (known as big data) may now be collected and stored from a variety of data sources, including event logs, the internet, smartphones, databases, sensors, cloud computing, and Internet of Things (I...A vast amount of data (known as big data) may now be collected and stored from a variety of data sources, including event logs, the internet, smartphones, databases, sensors, cloud computing, and Internet of Things (IoT) devices. The term “big data security” refers to all the safeguards and instruments used to protect both the data and analytics processes against intrusions, theft, and other hostile actions that could endanger or adversely influence them. Beyond being a high-value and desirable target, protecting Big Data has particular difficulties. Big Data security does not fundamentally differ from conventional data security. Big Data security issues are caused by extraneous distinctions rather than fundamental ones. This study meticulously outlines the numerous security difficulties Large Data analytics now faces and encourages additional joint research for reducing both big data security challenges utilizing Ontology Web Language (OWL). Although we focus on the Security Challenges of Big Data in this essay, we will also briefly cover the broader Challenges of Big Data. The proposed classification of Big Data security based on ontology web language resulting from the protégé software has 32 classes and 45 subclasses.展开更多
In the present scenario of rapid growth in cloud computing models,several companies and users started to share their data on cloud servers.However,when the model is not completely trusted,the data owners face several ...In the present scenario of rapid growth in cloud computing models,several companies and users started to share their data on cloud servers.However,when the model is not completely trusted,the data owners face several security-related problems,such as user privacy breaches,data disclosure,data corruption,and so on,during the process of data outsourcing.For addressing and handling the security-related issues on Cloud,several models were proposed.With that concern,this paper develops a Privacy-Preserved Data Security Approach(PP-DSA)to provide the data security and data integrity for the out-sourcing data in Cloud Environment.Privacy preservation is ensured in this work with the Efficient Authentication Technique(EAT)using the Group Signature method that is applied with Third-Party Auditor(TPA).The role of the auditor is to secure the data and guarantee shared data integrity.Additionally,the Cloud Service Provider(CSP)and Data User(DU)can also be the attackers that are to be handled with the EAT.Here,the major objective of the work is to enhance cloud security and thereby,increase Quality of Service(QoS).The results are evaluated based on the model effectiveness,security,and reliability and show that the proposed model provides better results than existing works.展开更多
Cyberattacks are difficult to prevent because the targeted companies and organizations are often relying on new and fundamentally insecure cloudbased technologies,such as the Internet of Things.With increasing industr...Cyberattacks are difficult to prevent because the targeted companies and organizations are often relying on new and fundamentally insecure cloudbased technologies,such as the Internet of Things.With increasing industry adoption and migration of traditional computing services to the cloud,one of the main challenges in cybersecurity is to provide mechanisms to secure these technologies.This work proposes a Data Security Framework for cloud computing services(CCS)that evaluates and improves CCS data security from a software engineering perspective by evaluating the levels of security within the cloud computing paradigm using engineering methods and techniques applied to CCS.This framework is developed by means of a methodology based on a heuristic theory that incorporates knowledge generated by existing works as well as the experience of their implementation.The paper presents the design details of the framework,which consists of three stages:identification of data security requirements,management of data security risks and evaluation of data security performance in CCS.展开更多
The Internet of Medical Things(IoMT)is an online device that senses and transmits medical data from users to physicians within a time interval.In,recent years,IoMT has rapidly grown in the medicalfield to provide heal...The Internet of Medical Things(IoMT)is an online device that senses and transmits medical data from users to physicians within a time interval.In,recent years,IoMT has rapidly grown in the medicalfield to provide healthcare services without physical appearance.With the use of sensors,IoMT applications are used in healthcare management.In such applications,one of the most important factors is data security,given that its transmission over the network may cause obtrusion.For data security in IoMT systems,blockchain is used due to its numerous blocks for secure data storage.In this study,Blockchain-assisted secure data management framework(BSDMF)and Proof of Activity(PoA)protocol using malicious code detection algorithm is used in the proposed data security for the healthcare system.The main aim is to enhance the data security over the networks.The PoA protocol enhances high security of data from the literature review.By replacing the malicious node from the block,the PoA can provide high security for medical data in the blockchain.Comparison with existing systems shows that the proposed simulation with BSD-Malicious code detection algorithm achieves higher accuracy ratio,precision ratio,security,and efficiency and less response time for Blockchain-enabled healthcare systems.展开更多
With the development of information technology,the Internet of Things(IoT)has gradually become the third wave of the worldwide information industry revolution after the computer and the Internet.The application of the...With the development of information technology,the Internet of Things(IoT)has gradually become the third wave of the worldwide information industry revolution after the computer and the Internet.The application of the IoT has brought great convenience to people’s production and life.However,the potential information security problems in various IoT applications are gradually exposed and people pay more attention to them.The traditional centralized data storage and management model of the IoT is easy to cause transmission delay,single point of failure,privacy disclosure and other problems,and eventually leads to unpredictable behavior of the system.Blockchain technology can effectively improve the operation and data security status of the IoT.Referring to the storage model of the Fabric blockchain project,this paper designs a data security storage model suitable for the IoT system.The simulation results show that the model is not only effective and extensible,but also can better protect the data security of the Internet of Things.展开更多
At present,health care applications,government services,and banking applications use big data with cloud storage to process and implement data.Data mobility in cloud environments uses protection protocols and algorith...At present,health care applications,government services,and banking applications use big data with cloud storage to process and implement data.Data mobility in cloud environments uses protection protocols and algorithms to secure sensitive user data.Sometimes,data may have highly sensitive information,lead-ing users to consider using big data and cloud processing regardless of whether they are secured are not.Threats to sensitive data in cloud systems produce high risks,and existing security methods do not provide enough security to sensitive user data in cloud and big data environments.At present,several security solu-tions support cloud systems.Some of them include Hadoop Distributed File Sys-tem(HDFS)baseline Kerberos security,socket layer-based HDFS security,and hybrid security systems,which have time complexity in providing security inter-actions.Thus,mobile data security algorithms are necessary in cloud environ-ments to avoid time risks in providing security.In our study,we propose a data mobility and security(DMoS)algorithm to provide security of data mobility in cloud environments.By analyzing metadata,data are classified as secured and open data based on their importance.Secured data are sensitive user data,whereas open data are open to the public.On the basis of data classification,secured data are applied to the DMoS algorithm to achieve high security in HDFS.The pro-posed approach is compared with the time complexity of three existing algo-rithms,and results are evaluated.展开更多
In this paper, we survey data security and privacy problems created by cloud storage applications and propose a cloud storage security architecture. We discuss state-of-the-art techniques for ensuring the privacy and ...In this paper, we survey data security and privacy problems created by cloud storage applications and propose a cloud storage security architecture. We discuss state-of-the-art techniques for ensuring the privacy and security of data stored in the cloud. We discuss policies for access control and data integrity, availability, and privacy. We also discuss several key solutions proposed in current literature and point out future research directions.展开更多
Data outsourcing through cloud storage enables the users to share on-demand resources with cost effective IT services but several security issues arise like confidentiality, integrity and authentication. Each of them ...Data outsourcing through cloud storage enables the users to share on-demand resources with cost effective IT services but several security issues arise like confidentiality, integrity and authentication. Each of them plays an important role in the successful achievement of the other. In cloud computing data integrity assurance is one of the major challenges because the user has no control over the security mechanism to protect the data. Data integrity insures that data received are the same as data stored. It is a result of data security but data integrity refers to validity and accuracy of data rather than protect the data. Data security refers to protection of data against unauthorized access, modification or corruption and it is necessary to ensure data integrity. This paper proposed a new approach using Matrix Dialing Method in block level to enhance the performance of both data integrity and data security without using Third Party Auditor (TPA). In this approach, the data are partitioned into number of blocks and each block converted into a square matrix. Determinant factor of each matrix is generated dynamically to ensure data integrity. This model also implements a combination of AES algorithm and SHA-1 algorithm for digital signature generation. Data coloring on digital signature is applied to ensure data security with better performance. The performance analysis using cloud simulator shows that the proposed scheme is highly efficient and secure as it overcomes the limitations of previous approaches of data security using encryption and decryption algorithms and data integrity assurance using TPA due to server computation time and accuracy.展开更多
The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data world.This approach allows efficient infrastructure to store and access big real-time data and smart IoE ...The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data world.This approach allows efficient infrastructure to store and access big real-time data and smart IoE services from the cloud.The IoE-based cloud computing services are located at remote locations without the control of the data owner.The data owners mostly depend on the untrusted Cloud Service Provider(CSP)and do not know the implemented security capabilities.The lack of knowledge about security capabilities and control over data raises several security issues.Deoxyribonucleic Acid(DNA)computing is a biological concept that can improve the security of IoE big data.The IoE big data security scheme consists of the Station-to-Station Key Agreement Protocol(StS KAP)and Feistel cipher algorithms.This paper proposed a DNA-based cryptographic scheme and access control model(DNACDS)to solve IoE big data security and access issues.The experimental results illustrated that DNACDS performs better than other DNA-based security schemes.The theoretical security analysis of the DNACDS shows better resistance capabilities.展开更多
In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose...In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average.展开更多
In recent years,it has been observed that the disclosure of information increases the risk of terrorism.Without restricting the accessibility of information,providing security is difficult.So,there is a demand for tim...In recent years,it has been observed that the disclosure of information increases the risk of terrorism.Without restricting the accessibility of information,providing security is difficult.So,there is a demand for time tofill the gap between security and accessibility of information.In fact,security tools should be usable for improving the security as well as the accessibility of information.Though security and accessibility are not directly influenced,some of their factors are indirectly influenced by each other.Attributes play an important role in bridging the gap between security and accessibility.In this paper,we identify the key attributes of accessibility and security that impact directly and indirectly on each other,such as confidentiality,integrity,availability,and severity.The significance of every attribute on the basis of obtained weight is important for its effect on security during the big data security life cycle process.To calculate the proposed work,researchers utilised the Fuzzy Analytic Hierarchy Process(Fuzzy AHP).Thefindings show that the Fuzzy AHP is a very accurate mechanism for determining the best security solution in a real-time healthcare context.The study also looks at the rapidly evolving security technologies in healthcare that could help improve healthcare services and the future prospects in this area.展开更多
With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.Th...With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.The best way to enhance traffic flow for vehicles and traffic management departments is to share thedata they receive.There needs to be more protection for the VANET systems.An effective and safe methodof outsourcing is suggested,which reduces computation costs by achieving data security using a homomorphicmapping based on the conjugate operation of matrices.This research proposes a VANET-based data outsourcingsystem to fix the issues.To keep data outsourcing secure,the suggested model takes cryptography models intoaccount.Fog will keep the generated keys for the purpose of vehicle authentication.For controlling and overseeingthe outsourced data while preserving privacy,the suggested approach considers the Trusted Certified Auditor(TCA).Using the secret key,TCA can identify the genuine identity of VANETs when harmful messages aredetected.The proposed model develops a TCA-based unique static vehicle labeling system using cryptography(TCA-USVLC)for secure data outsourcing and privacy preservation in VANETs.The proposed model calculatesthe trust of vehicles in 16 ms for an average of 180 vehicles and achieves 98.6%accuracy for data encryption toprovide security.The proposedmodel achieved 98.5%accuracy in data outsourcing and 98.6%accuracy in privacypreservation in fog-enabled VANETs.Elliptical curve cryptography models can be applied in the future for betterencryption and decryption rates with lightweight cryptography operations.展开更多
Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policy...Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policymanagement efficiency and difficulty in accurately describing the access control policy. To overcome theseproblems, this paper proposes a big data access control mechanism based on a two-layer permission decisionstructure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes areintroduced in the ABAC model as business constraints between entities. The proposed mechanism implementsa two-layer permission decision structure composed of the inherent attributes of access control entities and thebusiness attributes, which constitute the general permission decision algorithm based on logical calculation andthe business permission decision algorithm based on a bi-directional long short-term memory (BiLSTM) neuralnetwork, respectively. The general permission decision algorithm is used to implement accurate policy decisions,while the business permission decision algorithm implements fuzzy decisions based on the business constraints.The BiLSTM neural network is used to calculate the similarity of the business attributes to realize intelligent,adaptive, and efficient access control permission decisions. Through the two-layer permission decision structure,the complex and diverse big data access control management requirements can be satisfied by considering thesecurity and availability of resources. Experimental results show that the proposed mechanism is effective andreliable. In summary, it can efficiently support the secure sharing of big data resources.展开更多
Medical institution data compliance is an exogenous product of the digital society,serving as a crucial means to maintain and balance the relationship between data protection and data sharing,as well as individual int...Medical institution data compliance is an exogenous product of the digital society,serving as a crucial means to maintain and balance the relationship between data protection and data sharing,as well as individual interests and public interests.The implementation of the Healthy China Initiative greatly benefits from its practical significance.In practice,data from medical institutions takes varied forms,including personally identifiable data collected before diagnosis and treatment,clinical medical data generated during diagnosis and treatment,medical data collected in public health management,and potential medical data generated in daily life.In the new journey of comprehensively promoting the Chinese path to modernization,it is necessary to clarify the shift from an individual-oriented to a societal-oriented value system,highlighting the reinforcing role of the trust concept.Guided by the principle of minimizing data utilization,the focus is on the new developments and changes in medical institution data in the postpandemic era.This involves a series of measures such as fulfilling the obligation of notification and consent,specifying the scope of data collection and usage,strengthening the standardized use of relevant technical measures,and establishing a sound legal responsibility system for data compliance.Through these measures,a flexible and efficient medical institution data compliance system can be constructed.展开更多
The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure ...The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.展开更多
This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hac...This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hackers, thereby making customer/client data visible and unprotected. Also, this led to enormous risk of the clients/customers due to defective equipment, bugs, faulty servers, and specious actions. The aim if this paper therefore is to analyze a secure model using Unicode Transformation Format (UTF) base 64 algorithms for storage of data in cloud securely. The methodology used was Object Orientated Hypermedia Analysis and Design Methodology (OOHADM) was adopted. Python was used to develop the security model;the role-based access control (RBAC) and multi-factor authentication (MFA) to enhance security Algorithm were integrated into the Information System developed with HTML 5, JavaScript, Cascading Style Sheet (CSS) version 3 and PHP7. This paper also discussed some of the following concepts;Development of Computing in Cloud, Characteristics of computing, Cloud deployment Model, Cloud Service Models, etc. The results showed that the proposed enhanced security model for information systems of cooperate platform handled multiple authorization and authentication menace, that only one login page will direct all login requests of the different modules to one Single Sign On Server (SSOS). This will in turn redirect users to their requested resources/module when authenticated, leveraging on the Geo-location integration for physical location validation. The emergence of this newly developed system will solve the shortcomings of the existing systems and reduce time and resources incurred while using the existing system.展开更多
The landscape of cybersecurity is rapidly evolving due to the advancement and integration of Artificial Intelligence (AI) and Machine Learning (ML). This paper explores the crucial role of AI and ML in enhancing cyber...The landscape of cybersecurity is rapidly evolving due to the advancement and integration of Artificial Intelligence (AI) and Machine Learning (ML). This paper explores the crucial role of AI and ML in enhancing cybersecurity defenses against increasingly sophisticated cyber threats, while also highlighting the new vulnerabilities introduced by these technologies. Through a comprehensive analysis that includes historical trends, technological evaluations, and predictive modeling, the dual-edged nature of AI and ML in cybersecurity is examined. Significant challenges such as data privacy, continuous training of AI models, manipulation risks, and ethical concerns are addressed. The paper emphasizes a balanced approach that leverages technological innovation alongside rigorous ethical standards and robust cybersecurity practices. This approach facilitates collaboration among various stakeholders to develop guidelines that ensure responsible and effective use of AI in cybersecurity, aiming to enhance system integrity and privacy without compromising security.展开更多
In order to cope with varying protection granularity levels of XML(extensible Markup Language) documents, we propose a TXAC (Two-level XML. Access Control) framework,in which an extended TRBAC ( Temporal Role-Based Ac...In order to cope with varying protection granularity levels of XML(extensible Markup Language) documents, we propose a TXAC (Two-level XML. Access Control) framework,in which an extended TRBAC ( Temporal Role-Based Access Control) approach is proposed to deal withthe dynamic XML data With different system components, LXAC algorithm evaluates access requestsefficiently by appropriate access control policy in dynamic web environment. The method is aflexible and powerful security system offering amulti-level access control solution.展开更多
Cloud computing is a technology that provides secure storage space for the customer’s massive data and gives them the facility to retrieve and transmit their data efficiently through a secure network in which encrypt...Cloud computing is a technology that provides secure storage space for the customer’s massive data and gives them the facility to retrieve and transmit their data efficiently through a secure network in which encryption and decryption algorithms are being deployed.In cloud computation,data processing,storage,and transmission can be done through laptops andmobile devices.Data Storing in cloud facilities is expanding each day and data is the most significant asset of clients.The important concern with the transmission of information to the cloud is security because there is no perceivability of the client’s data.They have to be dependent on cloud service providers for assurance of the platform’s security.Data security and privacy issues reduce the progression of cloud computing and add complexity.Nowadays;most of the data that is stored on cloud servers is in the form of images and photographs,which is a very confidential form of data that requires secured transmission.In this research work,a public key cryptosystem is being implemented to store,retrieve and transmit information in cloud computation through a modified Rivest-Shamir-Adleman(RSA)algorithm for the encryption and decryption of data.The implementation of a modified RSA algorithm results guaranteed the security of data in the cloud environment.To enhance the user data security level,a neural network is used for user authentication and recognition.Moreover;the proposed technique develops the performance of detection as a loss function of the bounding box.The Faster Region-Based Convolutional Neural Network(Faster R-CNN)gets trained on images to identify authorized users with an accuracy of 99.9%on training.展开更多
As each cluster head(CH)sensor node is used to aggregate,fuse,and forward data from different sensor nodes in an underwater acoustic sensor network(UASN),guaranteeing the data security in a CH is very critical.In this...As each cluster head(CH)sensor node is used to aggregate,fuse,and forward data from different sensor nodes in an underwater acoustic sensor network(UASN),guaranteeing the data security in a CH is very critical.In this paper,a cooperative security monitoring mechanism aided by multiple slave cluster heads(SCHs)is proposed to keep track of the data security of a CH.By designing a low complexity“equilateral triangle algorithm(ETA)”,the optimal SCHs(named as ETA-based multiple SCHs)are selected from the candidate SCHs so as to improve the dispersion and coverage of SCHs and achieve largescale data security monitoring.In addition,by analyzing the entire monitoring process,the close form expression of the probability of the failure attack identification for the SCHs with respect to the probability of attack launched by ordinary nodes is deduced.The simulation results show that the proposed optimal ETA-based multiple SCH cooperation scheme has lower probability of the failure attack identification than that of the existing schemes.In addition,the numerical simulation results are consistent with the theoretical analysis results,thus verifying the effectiveness of the proposed scheme.展开更多
文摘A vast amount of data (known as big data) may now be collected and stored from a variety of data sources, including event logs, the internet, smartphones, databases, sensors, cloud computing, and Internet of Things (IoT) devices. The term “big data security” refers to all the safeguards and instruments used to protect both the data and analytics processes against intrusions, theft, and other hostile actions that could endanger or adversely influence them. Beyond being a high-value and desirable target, protecting Big Data has particular difficulties. Big Data security does not fundamentally differ from conventional data security. Big Data security issues are caused by extraneous distinctions rather than fundamental ones. This study meticulously outlines the numerous security difficulties Large Data analytics now faces and encourages additional joint research for reducing both big data security challenges utilizing Ontology Web Language (OWL). Although we focus on the Security Challenges of Big Data in this essay, we will also briefly cover the broader Challenges of Big Data. The proposed classification of Big Data security based on ontology web language resulting from the protégé software has 32 classes and 45 subclasses.
文摘In the present scenario of rapid growth in cloud computing models,several companies and users started to share their data on cloud servers.However,when the model is not completely trusted,the data owners face several security-related problems,such as user privacy breaches,data disclosure,data corruption,and so on,during the process of data outsourcing.For addressing and handling the security-related issues on Cloud,several models were proposed.With that concern,this paper develops a Privacy-Preserved Data Security Approach(PP-DSA)to provide the data security and data integrity for the out-sourcing data in Cloud Environment.Privacy preservation is ensured in this work with the Efficient Authentication Technique(EAT)using the Group Signature method that is applied with Third-Party Auditor(TPA).The role of the auditor is to secure the data and guarantee shared data integrity.Additionally,the Cloud Service Provider(CSP)and Data User(DU)can also be the attackers that are to be handled with the EAT.Here,the major objective of the work is to enhance cloud security and thereby,increase Quality of Service(QoS).The results are evaluated based on the model effectiveness,security,and reliability and show that the proposed model provides better results than existing works.
文摘Cyberattacks are difficult to prevent because the targeted companies and organizations are often relying on new and fundamentally insecure cloudbased technologies,such as the Internet of Things.With increasing industry adoption and migration of traditional computing services to the cloud,one of the main challenges in cybersecurity is to provide mechanisms to secure these technologies.This work proposes a Data Security Framework for cloud computing services(CCS)that evaluates and improves CCS data security from a software engineering perspective by evaluating the levels of security within the cloud computing paradigm using engineering methods and techniques applied to CCS.This framework is developed by means of a methodology based on a heuristic theory that incorporates knowledge generated by existing works as well as the experience of their implementation.The paper presents the design details of the framework,which consists of three stages:identification of data security requirements,management of data security risks and evaluation of data security performance in CCS.
基金Taif University Researchers Supporting Project Number(TURSP-2020/98),Taif University,Taif,Saudi Arabia.
文摘The Internet of Medical Things(IoMT)is an online device that senses and transmits medical data from users to physicians within a time interval.In,recent years,IoMT has rapidly grown in the medicalfield to provide healthcare services without physical appearance.With the use of sensors,IoMT applications are used in healthcare management.In such applications,one of the most important factors is data security,given that its transmission over the network may cause obtrusion.For data security in IoMT systems,blockchain is used due to its numerous blocks for secure data storage.In this study,Blockchain-assisted secure data management framework(BSDMF)and Proof of Activity(PoA)protocol using malicious code detection algorithm is used in the proposed data security for the healthcare system.The main aim is to enhance the data security over the networks.The PoA protocol enhances high security of data from the literature review.By replacing the malicious node from the block,the PoA can provide high security for medical data in the blockchain.Comparison with existing systems shows that the proposed simulation with BSD-Malicious code detection algorithm achieves higher accuracy ratio,precision ratio,security,and efficiency and less response time for Blockchain-enabled healthcare systems.
基金supported by the National Social Science Foundation Project of China under Grant 16BTQ085.
文摘With the development of information technology,the Internet of Things(IoT)has gradually become the third wave of the worldwide information industry revolution after the computer and the Internet.The application of the IoT has brought great convenience to people’s production and life.However,the potential information security problems in various IoT applications are gradually exposed and people pay more attention to them.The traditional centralized data storage and management model of the IoT is easy to cause transmission delay,single point of failure,privacy disclosure and other problems,and eventually leads to unpredictable behavior of the system.Blockchain technology can effectively improve the operation and data security status of the IoT.Referring to the storage model of the Fabric blockchain project,this paper designs a data security storage model suitable for the IoT system.The simulation results show that the model is not only effective and extensible,but also can better protect the data security of the Internet of Things.
文摘At present,health care applications,government services,and banking applications use big data with cloud storage to process and implement data.Data mobility in cloud environments uses protection protocols and algorithms to secure sensitive user data.Sometimes,data may have highly sensitive information,lead-ing users to consider using big data and cloud processing regardless of whether they are secured are not.Threats to sensitive data in cloud systems produce high risks,and existing security methods do not provide enough security to sensitive user data in cloud and big data environments.At present,several security solu-tions support cloud systems.Some of them include Hadoop Distributed File Sys-tem(HDFS)baseline Kerberos security,socket layer-based HDFS security,and hybrid security systems,which have time complexity in providing security inter-actions.Thus,mobile data security algorithms are necessary in cloud environ-ments to avoid time risks in providing security.In our study,we propose a data mobility and security(DMoS)algorithm to provide security of data mobility in cloud environments.By analyzing metadata,data are classified as secured and open data based on their importance.Secured data are sensitive user data,whereas open data are open to the public.On the basis of data classification,secured data are applied to the DMoS algorithm to achieve high security in HDFS.The pro-posed approach is compared with the time complexity of three existing algo-rithms,and results are evaluated.
基金supported by National Natural Science Foundation of China under grants 61173170 and 60873225National High Technology Research and Development Program of China under grant 2007AA01Z403Innovation Fund of Huazhong University of Science and Technology under grants 2013QN120,2012TS052 and 2012TS053
文摘In this paper, we survey data security and privacy problems created by cloud storage applications and propose a cloud storage security architecture. We discuss state-of-the-art techniques for ensuring the privacy and security of data stored in the cloud. We discuss policies for access control and data integrity, availability, and privacy. We also discuss several key solutions proposed in current literature and point out future research directions.
文摘Data outsourcing through cloud storage enables the users to share on-demand resources with cost effective IT services but several security issues arise like confidentiality, integrity and authentication. Each of them plays an important role in the successful achievement of the other. In cloud computing data integrity assurance is one of the major challenges because the user has no control over the security mechanism to protect the data. Data integrity insures that data received are the same as data stored. It is a result of data security but data integrity refers to validity and accuracy of data rather than protect the data. Data security refers to protection of data against unauthorized access, modification or corruption and it is necessary to ensure data integrity. This paper proposed a new approach using Matrix Dialing Method in block level to enhance the performance of both data integrity and data security without using Third Party Auditor (TPA). In this approach, the data are partitioned into number of blocks and each block converted into a square matrix. Determinant factor of each matrix is generated dynamically to ensure data integrity. This model also implements a combination of AES algorithm and SHA-1 algorithm for digital signature generation. Data coloring on digital signature is applied to ensure data security with better performance. The performance analysis using cloud simulator shows that the proposed scheme is highly efficient and secure as it overcomes the limitations of previous approaches of data security using encryption and decryption algorithms and data integrity assurance using TPA due to server computation time and accuracy.
文摘The Internet of Everything(IoE)based cloud computing is one of the most prominent areas in the digital big data world.This approach allows efficient infrastructure to store and access big real-time data and smart IoE services from the cloud.The IoE-based cloud computing services are located at remote locations without the control of the data owner.The data owners mostly depend on the untrusted Cloud Service Provider(CSP)and do not know the implemented security capabilities.The lack of knowledge about security capabilities and control over data raises several security issues.Deoxyribonucleic Acid(DNA)computing is a biological concept that can improve the security of IoE big data.The IoE big data security scheme consists of the Station-to-Station Key Agreement Protocol(StS KAP)and Feistel cipher algorithms.This paper proposed a DNA-based cryptographic scheme and access control model(DNACDS)to solve IoE big data security and access issues.The experimental results illustrated that DNACDS performs better than other DNA-based security schemes.The theoretical security analysis of the DNACDS shows better resistance capabilities.
文摘In order to address the problems of the single encryption algorithm,such as low encryption efficiency and unreliable metadata for static data storage of big data platforms in the cloud computing environment,we propose a Hadoop based big data secure storage scheme.Firstly,in order to disperse the NameNode service from a single server to multiple servers,we combine HDFS federation and HDFS high-availability mechanisms,and use the Zookeeper distributed coordination mechanism to coordinate each node to achieve dual-channel storage.Then,we improve the ECC encryption algorithm for the encryption of ordinary data,and adopt a homomorphic encryption algorithm to encrypt data that needs to be calculated.To accelerate the encryption,we adopt the dualthread encryption mode.Finally,the HDFS control module is designed to combine the encryption algorithm with the storage model.Experimental results show that the proposed solution solves the problem of a single point of failure of metadata,performs well in terms of metadata reliability,and can realize the fault tolerance of the server.The improved encryption algorithm integrates the dual-channel storage mode,and the encryption storage efficiency improves by 27.6% on average.
基金Funding for this study was received from the Taif University,Taif,Saudi Arabia under the Grant No.TURSP-2020/150.
文摘In recent years,it has been observed that the disclosure of information increases the risk of terrorism.Without restricting the accessibility of information,providing security is difficult.So,there is a demand for time tofill the gap between security and accessibility of information.In fact,security tools should be usable for improving the security as well as the accessibility of information.Though security and accessibility are not directly influenced,some of their factors are indirectly influenced by each other.Attributes play an important role in bridging the gap between security and accessibility.In this paper,we identify the key attributes of accessibility and security that impact directly and indirectly on each other,such as confidentiality,integrity,availability,and severity.The significance of every attribute on the basis of obtained weight is important for its effect on security during the big data security life cycle process.To calculate the proposed work,researchers utilised the Fuzzy Analytic Hierarchy Process(Fuzzy AHP).Thefindings show that the Fuzzy AHP is a very accurate mechanism for determining the best security solution in a real-time healthcare context.The study also looks at the rapidly evolving security technologies in healthcare that could help improve healthcare services and the future prospects in this area.
文摘With the recent technological developments,massive vehicular ad hoc networks(VANETs)have been established,enabling numerous vehicles and their respective Road Side Unit(RSU)components to communicate with oneanother.The best way to enhance traffic flow for vehicles and traffic management departments is to share thedata they receive.There needs to be more protection for the VANET systems.An effective and safe methodof outsourcing is suggested,which reduces computation costs by achieving data security using a homomorphicmapping based on the conjugate operation of matrices.This research proposes a VANET-based data outsourcingsystem to fix the issues.To keep data outsourcing secure,the suggested model takes cryptography models intoaccount.Fog will keep the generated keys for the purpose of vehicle authentication.For controlling and overseeingthe outsourced data while preserving privacy,the suggested approach considers the Trusted Certified Auditor(TCA).Using the secret key,TCA can identify the genuine identity of VANETs when harmful messages aredetected.The proposed model develops a TCA-based unique static vehicle labeling system using cryptography(TCA-USVLC)for secure data outsourcing and privacy preservation in VANETs.The proposed model calculatesthe trust of vehicles in 16 ms for an average of 180 vehicles and achieves 98.6%accuracy for data encryption toprovide security.The proposedmodel achieved 98.5%accuracy in data outsourcing and 98.6%accuracy in privacypreservation in fog-enabled VANETs.Elliptical curve cryptography models can be applied in the future for betterencryption and decryption rates with lightweight cryptography operations.
基金Key Research and Development and Promotion Program of Henan Province(No.222102210069)Zhongyuan Science and Technology Innovation Leading Talent Project(224200510003)National Natural Science Foundation of China(No.62102449).
文摘Big data resources are characterized by large scale, wide sources, and strong dynamics. Existing access controlmechanisms based on manual policy formulation by security experts suffer from drawbacks such as low policymanagement efficiency and difficulty in accurately describing the access control policy. To overcome theseproblems, this paper proposes a big data access control mechanism based on a two-layer permission decisionstructure. This mechanism extends the attribute-based access control (ABAC) model. Business attributes areintroduced in the ABAC model as business constraints between entities. The proposed mechanism implementsa two-layer permission decision structure composed of the inherent attributes of access control entities and thebusiness attributes, which constitute the general permission decision algorithm based on logical calculation andthe business permission decision algorithm based on a bi-directional long short-term memory (BiLSTM) neuralnetwork, respectively. The general permission decision algorithm is used to implement accurate policy decisions,while the business permission decision algorithm implements fuzzy decisions based on the business constraints.The BiLSTM neural network is used to calculate the similarity of the business attributes to realize intelligent,adaptive, and efficient access control permission decisions. Through the two-layer permission decision structure,the complex and diverse big data access control management requirements can be satisfied by considering thesecurity and availability of resources. Experimental results show that the proposed mechanism is effective andreliable. In summary, it can efficiently support the secure sharing of big data resources.
文摘Medical institution data compliance is an exogenous product of the digital society,serving as a crucial means to maintain and balance the relationship between data protection and data sharing,as well as individual interests and public interests.The implementation of the Healthy China Initiative greatly benefits from its practical significance.In practice,data from medical institutions takes varied forms,including personally identifiable data collected before diagnosis and treatment,clinical medical data generated during diagnosis and treatment,medical data collected in public health management,and potential medical data generated in daily life.In the new journey of comprehensively promoting the Chinese path to modernization,it is necessary to clarify the shift from an individual-oriented to a societal-oriented value system,highlighting the reinforcing role of the trust concept.Guided by the principle of minimizing data utilization,the focus is on the new developments and changes in medical institution data in the postpandemic era.This involves a series of measures such as fulfilling the obligation of notification and consent,specifying the scope of data collection and usage,strengthening the standardized use of relevant technical measures,and establishing a sound legal responsibility system for data compliance.Through these measures,a flexible and efficient medical institution data compliance system can be constructed.
基金support of the Interdisciplinary Research Center for Intelligent Secure Systems(IRC-ISS)Internal Fund Grant#INSS2202.
文摘The use of the Internet of Things(IoT)is expanding at an unprecedented scale in many critical applications due to the ability to interconnect and utilize a plethora of wide range of devices.In critical infrastructure domains like oil and gas supply,intelligent transportation,power grids,and autonomous agriculture,it is essential to guarantee the confidentiality,integrity,and authenticity of data collected and exchanged.However,the limited resources coupled with the heterogeneity of IoT devices make it inefficient or sometimes infeasible to achieve secure data transmission using traditional cryptographic techniques.Consequently,designing a lightweight secure data transmission scheme is becoming essential.In this article,we propose lightweight secure data transmission(LSDT)scheme for IoT environments.LSDT consists of three phases and utilizes an effective combination of symmetric keys and the Elliptic Curve Menezes-Qu-Vanstone asymmetric key agreement protocol.We design the simulation environment and experiments to evaluate the performance of the LSDT scheme in terms of communication and computation costs.Security and performance analysis indicates that the LSDT scheme is secure,suitable for IoT applications,and performs better in comparison to other related security schemes.
文摘This paper was motivated by the existing problems of Cloud Data storage in Imo State University, Nigeria such as outsourced data causing the loss of data and misuse of customer information by unauthorized users or hackers, thereby making customer/client data visible and unprotected. Also, this led to enormous risk of the clients/customers due to defective equipment, bugs, faulty servers, and specious actions. The aim if this paper therefore is to analyze a secure model using Unicode Transformation Format (UTF) base 64 algorithms for storage of data in cloud securely. The methodology used was Object Orientated Hypermedia Analysis and Design Methodology (OOHADM) was adopted. Python was used to develop the security model;the role-based access control (RBAC) and multi-factor authentication (MFA) to enhance security Algorithm were integrated into the Information System developed with HTML 5, JavaScript, Cascading Style Sheet (CSS) version 3 and PHP7. This paper also discussed some of the following concepts;Development of Computing in Cloud, Characteristics of computing, Cloud deployment Model, Cloud Service Models, etc. The results showed that the proposed enhanced security model for information systems of cooperate platform handled multiple authorization and authentication menace, that only one login page will direct all login requests of the different modules to one Single Sign On Server (SSOS). This will in turn redirect users to their requested resources/module when authenticated, leveraging on the Geo-location integration for physical location validation. The emergence of this newly developed system will solve the shortcomings of the existing systems and reduce time and resources incurred while using the existing system.
文摘The landscape of cybersecurity is rapidly evolving due to the advancement and integration of Artificial Intelligence (AI) and Machine Learning (ML). This paper explores the crucial role of AI and ML in enhancing cybersecurity defenses against increasingly sophisticated cyber threats, while also highlighting the new vulnerabilities introduced by these technologies. Through a comprehensive analysis that includes historical trends, technological evaluations, and predictive modeling, the dual-edged nature of AI and ML in cybersecurity is examined. Significant challenges such as data privacy, continuous training of AI models, manipulation risks, and ethical concerns are addressed. The paper emphasizes a balanced approach that leverages technological innovation alongside rigorous ethical standards and robust cybersecurity practices. This approach facilitates collaboration among various stakeholders to develop guidelines that ensure responsible and effective use of AI in cybersecurity, aiming to enhance system integrity and privacy without compromising security.
文摘In order to cope with varying protection granularity levels of XML(extensible Markup Language) documents, we propose a TXAC (Two-level XML. Access Control) framework,in which an extended TRBAC ( Temporal Role-Based Access Control) approach is proposed to deal withthe dynamic XML data With different system components, LXAC algorithm evaluates access requestsefficiently by appropriate access control policy in dynamic web environment. The method is aflexible and powerful security system offering amulti-level access control solution.
基金This work is supported by the Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2019JM-348).
文摘Cloud computing is a technology that provides secure storage space for the customer’s massive data and gives them the facility to retrieve and transmit their data efficiently through a secure network in which encryption and decryption algorithms are being deployed.In cloud computation,data processing,storage,and transmission can be done through laptops andmobile devices.Data Storing in cloud facilities is expanding each day and data is the most significant asset of clients.The important concern with the transmission of information to the cloud is security because there is no perceivability of the client’s data.They have to be dependent on cloud service providers for assurance of the platform’s security.Data security and privacy issues reduce the progression of cloud computing and add complexity.Nowadays;most of the data that is stored on cloud servers is in the form of images and photographs,which is a very confidential form of data that requires secured transmission.In this research work,a public key cryptosystem is being implemented to store,retrieve and transmit information in cloud computation through a modified Rivest-Shamir-Adleman(RSA)algorithm for the encryption and decryption of data.The implementation of a modified RSA algorithm results guaranteed the security of data in the cloud environment.To enhance the user data security level,a neural network is used for user authentication and recognition.Moreover;the proposed technique develops the performance of detection as a loss function of the bounding box.The Faster Region-Based Convolutional Neural Network(Faster R-CNN)gets trained on images to identify authorized users with an accuracy of 99.9%on training.
基金supported in part by the Joint Fund of Science and Technology Department of Liaoning Province and State Key Laboratory of Robotics,China under Grant 2021-KF-22-08in part by the Basic Research Program of Science and Technology of Shenzhen,China under Grant JCYJ20190809161805508in part by the National Natural Science Foundation of China under Grant 62271423 and Grant 41976178.
文摘As each cluster head(CH)sensor node is used to aggregate,fuse,and forward data from different sensor nodes in an underwater acoustic sensor network(UASN),guaranteeing the data security in a CH is very critical.In this paper,a cooperative security monitoring mechanism aided by multiple slave cluster heads(SCHs)is proposed to keep track of the data security of a CH.By designing a low complexity“equilateral triangle algorithm(ETA)”,the optimal SCHs(named as ETA-based multiple SCHs)are selected from the candidate SCHs so as to improve the dispersion and coverage of SCHs and achieve largescale data security monitoring.In addition,by analyzing the entire monitoring process,the close form expression of the probability of the failure attack identification for the SCHs with respect to the probability of attack launched by ordinary nodes is deduced.The simulation results show that the proposed optimal ETA-based multiple SCH cooperation scheme has lower probability of the failure attack identification than that of the existing schemes.In addition,the numerical simulation results are consistent with the theoretical analysis results,thus verifying the effectiveness of the proposed scheme.