With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is ...With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.展开更多
Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by d...Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by data availability and privacy concerns.Federated learning(FL)has gained considerable attention because it allows for decentralized training on multiple local datasets.However,the training data collected by data providers are often non-independent and identically distributed(non-IID),resulting in poor FL performance.This paper proposes a privacy-preserving approach for sharing non-IID data in the industrial Internet using an FL approach based on blockchain technology.To overcome the problem of non-IID data leading to poor training accuracy,we propose dynamically updating the local model based on the divergence of the global and local models.This approach can significantly improve the accuracy of FL training when there is relatively large dispersion.In addition,we design a dynamic gradient clipping algorithm to alleviate the influence of noise on the model accuracy to reduce potential privacy leakage caused by sharing model parameters.Finally,we evaluate the performance of the proposed scheme using commonly used open-source image datasets.The simulation results demonstrate that our method can significantly enhance the accuracy while protecting privacy and maintaining efficiency,thereby providing a new solution to data-sharing and privacy-protection challenges in the industrial Internet.展开更多
In this paper,a variety of classical convolutional neural networks are trained on two different datasets using transfer learning method.We demonstrated that the training dataset has a significant impact on the trainin...In this paper,a variety of classical convolutional neural networks are trained on two different datasets using transfer learning method.We demonstrated that the training dataset has a significant impact on the training results,in addition to the optimization achieved through the model structure.However,the lack of open-source agricultural data,combined with the absence of a comprehensive open-source data sharing platform,remains a substantial obstacle.This issue is closely related to the difficulty and high cost of obtaining high-quality agricultural data,the low level of education of most employees,underdeveloped distributed training systems and unsecured data security.To address these challenges,this paper proposes a novel idea of constructing an agricultural data sharing platform based on a federated learning(FL)framework,aiming to overcome the deficiency of high-quality data in agricultural field training.展开更多
The fast proliferation of edge devices for the Internet of Things(IoT)has led to massive volumes of data explosion.The generated data is collected and shared using edge-based IoT structures at a considerably high freq...The fast proliferation of edge devices for the Internet of Things(IoT)has led to massive volumes of data explosion.The generated data is collected and shared using edge-based IoT structures at a considerably high frequency.Thus,the data-sharing privacy exposure issue is increasingly intimidating when IoT devices make malicious requests for filching sensitive information from a cloud storage system through edge nodes.To address the identified issue,we present evolutionary privacy preservation learning strategies for an edge computing-based IoT data sharing scheme.In particular,we introduce evolutionary game theory and construct a payoff matrix to symbolize intercommunication between IoT devices and edge nodes,where IoT devices and edge nodes are two parties of the game.IoT devices may make malicious requests to achieve their goals of stealing privacy.Accordingly,edge nodes should deny malicious IoT device requests to prevent IoT data from being disclosed.They dynamically adjust their own strategies according to the opponent's strategy and finally maximize the payoffs.Built upon a developed application framework to illustrate the concrete data sharing architecture,a novel algorithm is proposed that can derive the optimal evolutionary learning strategy.Furthermore,we numerically simulate evolutionarily stable strategies,and the final results experimentally verify the correctness of the IoT data sharing privacy preservation scheme.Therefore,the proposed model can effectively defeat malicious invasion and protect sensitive information from leaking when IoT data is shared.展开更多
Data sharing technology in Internet of Vehicles(Io V)has attracted great research interest with the goal of realizing intelligent transportation and traffic management.Meanwhile,the main concerns have been raised abou...Data sharing technology in Internet of Vehicles(Io V)has attracted great research interest with the goal of realizing intelligent transportation and traffic management.Meanwhile,the main concerns have been raised about the security and privacy of vehicle data.The mobility and real-time characteristics of vehicle data make data sharing more difficult in Io V.The emergence of blockchain and federated learning brings new directions.In this paper,a data-sharing model that combines blockchain and federated learning is proposed to solve the security and privacy problems of data sharing in Io V.First,we use federated learning to share data instead of exposing actual data and propose an adaptive differential privacy scheme to further balance the privacy and availability of data.Then,we integrate the verification scheme into the consensus process,so that the consensus computation can filter out low-quality models.Experimental data shows that our data-sharing model can better balance the relationship between data availability and privacy,and also has enhanced security.展开更多
Sharing of personal health records(PHR)in cloud computing is an essential functionality in the healthcare system.However,how to securely,efficiently and flexibly share PHRs data of the patient in a multi-receiver sett...Sharing of personal health records(PHR)in cloud computing is an essential functionality in the healthcare system.However,how to securely,efficiently and flexibly share PHRs data of the patient in a multi-receiver setting has not been well addressed.For instance,since the trust domain of the cloud server is not identical to the data owner or data user,the semi-trust cloud service provider may intentionally destroy or tamper shared PHRs data of user or only transform partial ciphertext of the shared PHRs or even return wrong computation results to save its storage and computation resource,to pursue maximum economic interest or other malicious purposes.Thus,the PHRs data storing or sharing via the cloud server should be performed with consistency and integrity verification.Fortunately,the emergence of blockchain technology provides new ideas and prospects for ensuring the consistency and integrity of shared PHRs data.To this end,in this work,we leverage the consortiumblockchain technology to enhance the trustworthiness of each participant and propose a blockchain-based patient-centric data sharing scheme for PHRs in cloud computing(BC-PC-Share).Different from the state-of-art schemes,our proposal can achieve the following desired properties:(1)Realizing patient-centric PHRs sharing with a public verification function,i.e.,which can ensure that the returned shared data is consistent with the requested shared data and the integrity of the shared data is not compromised.(2)Supporting scalable and fine-grained access control and sharing of PHRs data with multiple domain users,such as hospitals,medical research institutes,and medical insurance companies.(3)Achieving efficient user decryption by leveraging the transformation key technique and efficient user revocation by introducing time-controlled access.The security analysis and simulation experiment demonstrate that the proposed BC-PC-Share scheme is a feasible and promising solution for PHRs data sharing via consortium blockchain.展开更多
With the advancements in the era of artificial intelligence,blockchain,cloud computing,and big data,there is a need for secure,decentralized medical record storage and retrieval systems.While cloud storage solves stor...With the advancements in the era of artificial intelligence,blockchain,cloud computing,and big data,there is a need for secure,decentralized medical record storage and retrieval systems.While cloud storage solves storage issues,it is challenging to realize secure sharing of records over the network.Medi-block record in the healthcare system has brought a new digitalization method for patients’medical records.This centralized technology provides a symmetrical process between the hospital and doctors when patients urgently need to go to a different or nearby hospital.It enables electronic medical records to be available with the correct authentication and restricts access to medical data retrieval.Medi-block record is the consumer-centered healthcare data system that brings reliable and transparent datasets for the medical record.This study presents an extensive review of proposed solutions aiming to protect the privacy and integrity of medical data by securing data sharing for Medi-block records.It also aims to propose a comprehensive investigation of the recent advances in different methods of securing data sharing,such as using Blockchain technology,Access Control,Privacy-Preserving,Proxy Re-Encryption,and Service-On-Chain approach.Finally,we highlight the open issues and identify the challenges regarding secure data sharing for Medi-block records in the healthcare systems.展开更多
Enabling data sharing among smart grid power suppliers is a pressing challenge due to technical hurdles in verifying,storing,and synchronizing energy metering data.Access and sharing limitations are stringent for user...Enabling data sharing among smart grid power suppliers is a pressing challenge due to technical hurdles in verifying,storing,and synchronizing energy metering data.Access and sharing limitations are stringent for users,power companies,and researchers,demanding significant resources and time for permissions and verification.This paper proposes a blockchain-based architecture for secure and efficient sharing of electric energy metering data.Further,we propose a data sharing model based on evolutionary game theory.Based on the Lyapunov stability theory,the model’s evolutionary stable strategy(ESS)is analyzed.Numerical results verify the correctness and practicability of the scheme proposed in this paper,and provide a new method for realizing convenient,safe and fast data sharing.展开更多
Due to the fact that consumers'privacy data sharing has multifaceted and complex effects on the e-commerce platform and its two sided agents,consumers and sellers,a game-theoretic model in a monopoly e-market is s...Due to the fact that consumers'privacy data sharing has multifaceted and complex effects on the e-commerce platform and its two sided agents,consumers and sellers,a game-theoretic model in a monopoly e-market is set up to study the equilibrium strategies of the three agents(the platform,the seller on it and consumers)under privacy data sharing.Equilibrium decisions show that after sharing consumers'privacy data once,the platform can collect more privacy data from consumers.Meanwhile,privacy data sharing pushes the seller to reduce the product price.Moreover,the platform will increase the transaction fee if the privacy data sharing value is high.It is also indicated that privacy data sharing always benefits consumers and the seller.However,the platform's profit decreases if the privacy data sharing value is low and the privacy data sharing level is high.Finally,an extended model considering an incomplete information game among the agents is discussed.The results show that both the platform and the seller cannot obtain a high profit from privacy data sharing.Factors including the seller's possibility to buy privacy data,the privacy data sharing value and privacy data sharing level affect the two agents'payoffs.If the platform wishes to benefit from privacy data sharing,it should increase the possibility of the seller to buy privacy data or increase the privacy data sharing value.展开更多
With the development of the Internet of Things(IoT),the massive data sharing between IoT devices improves the Quality of Service(QoS)and user experience in various IoT applications.However,data sharing may cause serio...With the development of the Internet of Things(IoT),the massive data sharing between IoT devices improves the Quality of Service(QoS)and user experience in various IoT applications.However,data sharing may cause serious privacy leakages to data providers.To address this problem,in this study,data sharing is realized through model sharing,based on which a secure data sharing mechanism,called BP2P-FL,is proposed using peer-to-peer federated learning with the privacy protection of data providers.In addition,by introducing the blockchain to the data sharing,every training process is recorded to ensure that data providers offer high-quality data.For further privacy protection,the differential privacy technology is used to disturb the global data sharing model.The experimental results show that BP2P-FL has high accuracy and feasibility in the data sharing of various IoT applications.展开更多
The traditional centralized data sharing systems have potential risks such as single point of failures and excessive working load on the central node.As a distributed and collaborative alternative,approaches based upo...The traditional centralized data sharing systems have potential risks such as single point of failures and excessive working load on the central node.As a distributed and collaborative alternative,approaches based upon blockchain have been explored recently for Internet of Things(IoTs).However,the access from a legitimate user may be denied without the pre-defined policy and data update on the blockchain could be costly to the owners.In this paper,we first address these issues by incorporating the Accountable Subgroup Multi-Signature(ASM)algorithm into the Attribute-based Access Control(ABAC)method with Policy Smart Contract,to provide a finegrained and flexible solution.Next,we propose a policy-based Chameleon Hash algorithm that allows the data to be updated in a reliable and convenient way by the authorized users.Finally,we evaluate our work by comparing its performance with the benchmarks.The results demonstrate significant improvement on the effectiveness and efficiency.展开更多
In this paper,we propose a novel fuzzy matching data sharing scheme named FADS for cloudedge communications.FADS allows users to specify their access policies,and enables receivers to obtain the data transmitted by th...In this paper,we propose a novel fuzzy matching data sharing scheme named FADS for cloudedge communications.FADS allows users to specify their access policies,and enables receivers to obtain the data transmitted by the senders if and only if the two sides meet their defined certain policies simultaneously.Specifically,we first formalize the definition and security models of fuzzy matching data sharing in cloud-edge environments.Then,we construct a concrete instantiation by pairing-based cryptosystem and the privacy-preserving set intersection on attribute sets from both sides to construct a concurrent matching over the policies.If the matching succeeds,the data can be decrypted.Otherwise,nothing will be revealed.In addition,FADS allows users to dynamically specify the policy for each time,which is an urgent demand in practice.A thorough security analysis demonstrates that FADS is of provable security under indistinguishable chosen ciphertext attack(IND-CCA)in random oracle model against probabilistic polynomial-time(PPT)adversary,and the desirable security properties of privacy and authenticity are achieved.Extensive experiments provide evidence that FADS is with acceptable efficiency.展开更多
Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, w...Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, where big data is cached ubiquitously in the network and retrieved using data names. However, existing authentication and authorization schemes rely mostly on centralized servers to provide certification and mediation services for data retrieval. This causes considerable traffic overhead for the secure distributed sharing of data. To solve this problem, we employ identity-based cryptography (IBC) to propose a Distributed Authentication and Authorization Scheme (DAAS), where an identity-based signature (IBS) is used to achieve distributed verifications of the identities of publishers and users. Moreover, Ciphertext-Policy Attribnte-based encryption (CP-ABE) is used to enable the distributed and fine-grained authorization. DAAS consists of three phases: initialization, secure data publication, and secure data retrieval, which seamlessly integrate authentication and authorization with the in- terest/data communication paradigm in ICN. In particular, we propose trustworthy registration and Network Operator and Authority Manifest (NOAM) dissemination to provide initial secure registration and enable efficient authentication for global data retrieval. Meanwhile, Attribute Manifest (AM) distribution coupled with automatic attribute update is proposed to reduce the cost of attribute retrieval. We examine the performance of the proposed DAAS, which shows that it can achieve a lower bandwidth cost than existing schemes.展开更多
This paper aims to find a practical way of quantitatively representing the privacy of network data. A method of quantifying the privacy of network data anonymization based on similarity distance and entropy in the sce...This paper aims to find a practical way of quantitatively representing the privacy of network data. A method of quantifying the privacy of network data anonymization based on similarity distance and entropy in the scenario involving multiparty network data sharing with Trusted Third Party (TTP) is proposed. Simulations are then conducted using network data from different sources, and show that the measurement indicators defined in this paper can adequately quantify the privacy of the network. In particular, it can indicate the effect of the auxiliary information of the adversary on privacy.展开更多
Data sharing is a main application of cloud computing. Some existing solutions are proposed to provide flexible access control for outsourced data in the cloud. However, few attentions have been paid to group-oriented...Data sharing is a main application of cloud computing. Some existing solutions are proposed to provide flexible access control for outsourced data in the cloud. However, few attentions have been paid to group-oriented data sharing when multiple data owners want to share their private data for cooperative purposes. In this paper, we put forward a new paradigm, referred to as secure, scalable and efficient multi-owner(SSEM) data sharing in clouds. The SSEM integrates identity-based encryption and asymmetric group key agreement to enable group-oriented access control for data owners in a many-to-many sharing pattern. Moreover, with SSEM, users can join in or leave from the group conveniently with the privacy of both group data and user data.We proposed the key-ciphertext homomorphism technique to construct an SSEM scheme with short ciphertexts. The security analysis shows that our SSEM scheme achieves data security against unauthorized accesses and collusion attacks. Both theoretical and experimental results confirm that our proposed scheme takes users little costs to share and access outsourced data in a group manner.展开更多
With the rapid growth of Internet of Things(IoT)based models,and the lack amount of data makes cloud computing resources insufficient.Hence,edge computing-based techniques are becoming more popular in present research...With the rapid growth of Internet of Things(IoT)based models,and the lack amount of data makes cloud computing resources insufficient.Hence,edge computing-based techniques are becoming more popular in present research domains that makes data storage,and processing effective at the network edges.There are several advanced features like parallel processing and data perception are available in edge computing.Still,there are some challenges in providing privacy and data security over networks.To solve the security issues in Edge Computing,Hash-based Message Authentication Code(HMAC)algorithm is used to provide solutions for preserving data from various attacks that happens with the distributed network nature.This paper proposed a Trust Model for Secure Data Sharing(TM-SDS)with HMAC algorithm.Here,data security is ensured with local and global trust levels with the centralized processing of cloud and by conserving resources effectively.Further,the proposed model achieved 84.25%of packet delivery ratio which is better compared to existing models in the resulting phase.The data packets are securely transmitted between entities in the proposed model and results showed that proposed TM-SDS model outperforms the existing models in an efficient manner.展开更多
The Cloud Computing Environment(CCE)developed for using the dynamic cloud is the ability of software and services likely to grow with any business.It has transformed the methodology for storing the enterprise data,acc...The Cloud Computing Environment(CCE)developed for using the dynamic cloud is the ability of software and services likely to grow with any business.It has transformed the methodology for storing the enterprise data,accessing the data,and Data Sharing(DS).Big data frame a constant way of uploading and sharing the cloud data in a hierarchical architecture with different kinds of separate privileges to access the data.With the requirement of vast volumes of storage area in the CCEs,capturing a secured data access framework is an important issue.This paper proposes an Improved Secure Identification-based Multilevel Structure of Data Sharing(ISIMSDS)to hold the DS of big data in CCEs.The complex file partitioning technique is proposed to verify the access privilege context for sharing data in complex CCEs.An access control Encryption Method(EM)is used to improve the encryption.The Complexity is measured to increase the authentication standard.The active attack is protected using this ISIMSDS methodology.Our proposed ISIMSDS method assists in diminishing the Complexity whenever the user’s population is increasing rapidly.The security analysis proves that the proposed ISIMSDS methodology is more secure against the chosen-PlainText(PT)attack and provides more efficient computation and storage space than the related methods.The performance of the proposed ISIMSDS methodology provides more efficiency in communication costs such as encryption,decryption,and retrieval of the data.展开更多
Remote data monitoring system which adopts virtual instrument usually applies data sharing, acquisition and remote transmission technology via internet. It is able to finish concurrent data acquisition and processing ...Remote data monitoring system which adopts virtual instrument usually applies data sharing, acquisition and remote transmission technology via internet. It is able to finish concurrent data acquisition and processing for multi-user and multi-task and also build a personalized virtual testing environment for more people but with fewer instruments. In this paper, we' 11 elaborate on the design and implementation of information sharing platform through a typical example of how to build multi-user concurrent virtual testing environment based on the virtnal software LabVIEW.展开更多
The Internet technology has already changed the Information Society in profound ways, and will continue to do so. Nowadays many people foresee that there is a similar trajectory for the next generation of Internet - G...The Internet technology has already changed the Information Society in profound ways, and will continue to do so. Nowadays many people foresee that there is a similar trajectory for the next generation of Internet - Grid Technology. As an emerging computational and networking infrastructure, Grid Computing is designed to provide pervasive, uniform and reliable access to data, computational and human resources distributed in a dynamic, heterogeneous environment. On the other hand, the development of Geographic Information System (GIS) has been highly influenced by the evolution of information technology such as the Internet, telecommunications, software and various types of computing technology. In particular, in the distributed GIS domain, the development However, due to the closed and centralized has made significant impact in the past decade. legacy of the architecture and the lack of interoperability, modularity, and flexibility, current distributed GIS still cannot fully accommodate the distributed, dynamic, heterogeneous and speedy development in network and computing environments. Hence, the development of a high performance distributed GIS system is still a challenging task. So, the development of Grid computing technology undoubtedly provides a unique opportunity for distributed GIS, and a Grid Computing based GIS paradigm becomes inevitable. This paper proposes a new computing platform based distributed GIS framework - the Grid Geographic Information System (G^2IS).展开更多
An M_(S)7.4 earthquake struck west China in Maduo county,Guoluo prefecture,Qinghai province on May 22,2021,at 2:04 Beijing time(18:04 UTC on May 21,2021),which broke the quiet period of Chinese mainland for 1382 days ...An M_(S)7.4 earthquake struck west China in Maduo county,Guoluo prefecture,Qinghai province on May 22,2021,at 2:04 Beijing time(18:04 UTC on May 21,2021),which broke the quiet period of Chinese mainland for 1382 days without earthquakes of magnitude 7 or higher.The analysis of the seismic data sequence would play an important role in the in-depth study of the Maduo earthquake and the Bayan Har block.The Institute of Geophysics,China Earthquake Administration(CEA),compiled observation data recorded through 57 broadband seismometers within 500 km of the earthquake epicenter and intended to share for further researches in earthquake science community.The shared dataset included waveforms of the event and its sequence with magnitudes of 3.0 or higher that occurred between May 22-31,2021 with a sampling rate of 100 sps along with the continuous waveforms of 20 Hz and 100 Hz.Additionally,the seismic instrument response files also were shared.The event and continuous waveform records could be downloaded by submitting a request through the web platform of the Earthquake Science Data Center of the Institute of Geophysics,CEA(www.esdc.ac.cn).展开更多
基金This work was financially supported by the National Key Research and Development Program of China(2022YFB3103200).
文摘With the development of technology,the connected vehicle has been upgraded from a traditional transport vehicle to an information terminal and energy storage terminal.The data of ICV(intelligent connected vehicles)is the key to organically maximizing their efficiency.However,in the context of increasingly strict global data security supervision and compliance,numerous problems,including complex types of connected vehicle data,poor data collaboration between the IT(information technology)domain and OT(operation technology)domain,different data format standards,lack of shared trust sources,difficulty in ensuring the quality of shared data,lack of data control rights,as well as difficulty in defining data ownership,make vehicle data sharing face a lot of problems,and data islands are widespread.This study proposes FADSF(Fuzzy Anonymous Data Share Frame),an automobile data sharing scheme based on blockchain.The data holder publishes the shared data information and forms the corresponding label storage on the blockchain.The data demander browses the data directory information to select and purchase data assets and verify them.The data demander selects and purchases data assets and verifies them by browsing the data directory information.Meanwhile,this paper designs a data structure Data Discrimination Bloom Filter(DDBF),making complaints about illegal data.When the number of data complaints reaches the threshold,the audit traceability contract is triggered to punish the illegal data publisher,aiming to improve the data quality and maintain a good data sharing ecology.In this paper,based on Ethereum,the above scheme is tested to demonstrate its feasibility,efficiency and security.
基金This work was supported by the National Key R&D Program of China under Grant 2023YFB2703802the Hunan Province Innovation and Entrepreneurship Training Program for College Students S202311528073.
文摘Sharing data while protecting privacy in the industrial Internet is a significant challenge.Traditional machine learning methods require a combination of all data for training;however,this approach can be limited by data availability and privacy concerns.Federated learning(FL)has gained considerable attention because it allows for decentralized training on multiple local datasets.However,the training data collected by data providers are often non-independent and identically distributed(non-IID),resulting in poor FL performance.This paper proposes a privacy-preserving approach for sharing non-IID data in the industrial Internet using an FL approach based on blockchain technology.To overcome the problem of non-IID data leading to poor training accuracy,we propose dynamically updating the local model based on the divergence of the global and local models.This approach can significantly improve the accuracy of FL training when there is relatively large dispersion.In addition,we design a dynamic gradient clipping algorithm to alleviate the influence of noise on the model accuracy to reduce potential privacy leakage caused by sharing model parameters.Finally,we evaluate the performance of the proposed scheme using commonly used open-source image datasets.The simulation results demonstrate that our method can significantly enhance the accuracy while protecting privacy and maintaining efficiency,thereby providing a new solution to data-sharing and privacy-protection challenges in the industrial Internet.
基金National Key Research and Development Program of China(2021ZD0113704).
文摘In this paper,a variety of classical convolutional neural networks are trained on two different datasets using transfer learning method.We demonstrated that the training dataset has a significant impact on the training results,in addition to the optimization achieved through the model structure.However,the lack of open-source agricultural data,combined with the absence of a comprehensive open-source data sharing platform,remains a substantial obstacle.This issue is closely related to the difficulty and high cost of obtaining high-quality agricultural data,the low level of education of most employees,underdeveloped distributed training systems and unsecured data security.To address these challenges,this paper proposes a novel idea of constructing an agricultural data sharing platform based on a federated learning(FL)framework,aiming to overcome the deficiency of high-quality data in agricultural field training.
基金supported in part by Zhejiang Provincial Natural Science Foundation of China under Grant nos.LZ22F020002 and LY22F020003National Natural Science Foundation of China under Grant nos.61772018 and 62002226the key project of Humanities and Social Sciences in Colleges and Universities of Zhejiang Province under Grant no.2021GH017.
文摘The fast proliferation of edge devices for the Internet of Things(IoT)has led to massive volumes of data explosion.The generated data is collected and shared using edge-based IoT structures at a considerably high frequency.Thus,the data-sharing privacy exposure issue is increasingly intimidating when IoT devices make malicious requests for filching sensitive information from a cloud storage system through edge nodes.To address the identified issue,we present evolutionary privacy preservation learning strategies for an edge computing-based IoT data sharing scheme.In particular,we introduce evolutionary game theory and construct a payoff matrix to symbolize intercommunication between IoT devices and edge nodes,where IoT devices and edge nodes are two parties of the game.IoT devices may make malicious requests to achieve their goals of stealing privacy.Accordingly,edge nodes should deny malicious IoT device requests to prevent IoT data from being disclosed.They dynamically adjust their own strategies according to the opponent's strategy and finally maximize the payoffs.Built upon a developed application framework to illustrate the concrete data sharing architecture,a novel algorithm is proposed that can derive the optimal evolutionary learning strategy.Furthermore,we numerically simulate evolutionarily stable strategies,and the final results experimentally verify the correctness of the IoT data sharing privacy preservation scheme.Therefore,the proposed model can effectively defeat malicious invasion and protect sensitive information from leaking when IoT data is shared.
基金supported by the Ministry of Education Industry-University Cooperation Collaborative Education Projects of China under Grant 202102119036 and 202102082013。
文摘Data sharing technology in Internet of Vehicles(Io V)has attracted great research interest with the goal of realizing intelligent transportation and traffic management.Meanwhile,the main concerns have been raised about the security and privacy of vehicle data.The mobility and real-time characteristics of vehicle data make data sharing more difficult in Io V.The emergence of blockchain and federated learning brings new directions.In this paper,a data-sharing model that combines blockchain and federated learning is proposed to solve the security and privacy problems of data sharing in Io V.First,we use federated learning to share data instead of exposing actual data and propose an adaptive differential privacy scheme to further balance the privacy and availability of data.Then,we integrate the verification scheme into the consensus process,so that the consensus computation can filter out low-quality models.Experimental data shows that our data-sharing model can better balance the relationship between data availability and privacy,and also has enhanced security.
基金supported by the Youth Doctoral Foundation of Gansu Education Committee under Grant No.2022QB-176.
文摘Sharing of personal health records(PHR)in cloud computing is an essential functionality in the healthcare system.However,how to securely,efficiently and flexibly share PHRs data of the patient in a multi-receiver setting has not been well addressed.For instance,since the trust domain of the cloud server is not identical to the data owner or data user,the semi-trust cloud service provider may intentionally destroy or tamper shared PHRs data of user or only transform partial ciphertext of the shared PHRs or even return wrong computation results to save its storage and computation resource,to pursue maximum economic interest or other malicious purposes.Thus,the PHRs data storing or sharing via the cloud server should be performed with consistency and integrity verification.Fortunately,the emergence of blockchain technology provides new ideas and prospects for ensuring the consistency and integrity of shared PHRs data.To this end,in this work,we leverage the consortiumblockchain technology to enhance the trustworthiness of each participant and propose a blockchain-based patient-centric data sharing scheme for PHRs in cloud computing(BC-PC-Share).Different from the state-of-art schemes,our proposal can achieve the following desired properties:(1)Realizing patient-centric PHRs sharing with a public verification function,i.e.,which can ensure that the returned shared data is consistent with the requested shared data and the integrity of the shared data is not compromised.(2)Supporting scalable and fine-grained access control and sharing of PHRs data with multiple domain users,such as hospitals,medical research institutes,and medical insurance companies.(3)Achieving efficient user decryption by leveraging the transformation key technique and efficient user revocation by introducing time-controlled access.The security analysis and simulation experiment demonstrate that the proposed BC-PC-Share scheme is a feasible and promising solution for PHRs data sharing via consortium blockchain.
文摘With the advancements in the era of artificial intelligence,blockchain,cloud computing,and big data,there is a need for secure,decentralized medical record storage and retrieval systems.While cloud storage solves storage issues,it is challenging to realize secure sharing of records over the network.Medi-block record in the healthcare system has brought a new digitalization method for patients’medical records.This centralized technology provides a symmetrical process between the hospital and doctors when patients urgently need to go to a different or nearby hospital.It enables electronic medical records to be available with the correct authentication and restricts access to medical data retrieval.Medi-block record is the consumer-centered healthcare data system that brings reliable and transparent datasets for the medical record.This study presents an extensive review of proposed solutions aiming to protect the privacy and integrity of medical data by securing data sharing for Medi-block records.It also aims to propose a comprehensive investigation of the recent advances in different methods of securing data sharing,such as using Blockchain technology,Access Control,Privacy-Preserving,Proxy Re-Encryption,and Service-On-Chain approach.Finally,we highlight the open issues and identify the challenges regarding secure data sharing for Medi-block records in the healthcare systems.
文摘Enabling data sharing among smart grid power suppliers is a pressing challenge due to technical hurdles in verifying,storing,and synchronizing energy metering data.Access and sharing limitations are stringent for users,power companies,and researchers,demanding significant resources and time for permissions and verification.This paper proposes a blockchain-based architecture for secure and efficient sharing of electric energy metering data.Further,we propose a data sharing model based on evolutionary game theory.Based on the Lyapunov stability theory,the model’s evolutionary stable strategy(ESS)is analyzed.Numerical results verify the correctness and practicability of the scheme proposed in this paper,and provide a new method for realizing convenient,safe and fast data sharing.
基金The National Social Science Foundation of China(No.17BGL196)。
文摘Due to the fact that consumers'privacy data sharing has multifaceted and complex effects on the e-commerce platform and its two sided agents,consumers and sellers,a game-theoretic model in a monopoly e-market is set up to study the equilibrium strategies of the three agents(the platform,the seller on it and consumers)under privacy data sharing.Equilibrium decisions show that after sharing consumers'privacy data once,the platform can collect more privacy data from consumers.Meanwhile,privacy data sharing pushes the seller to reduce the product price.Moreover,the platform will increase the transaction fee if the privacy data sharing value is high.It is also indicated that privacy data sharing always benefits consumers and the seller.However,the platform's profit decreases if the privacy data sharing value is low and the privacy data sharing level is high.Finally,an extended model considering an incomplete information game among the agents is discussed.The results show that both the platform and the seller cannot obtain a high profit from privacy data sharing.Factors including the seller's possibility to buy privacy data,the privacy data sharing value and privacy data sharing level affect the two agents'payoffs.If the platform wishes to benefit from privacy data sharing,it should increase the possibility of the seller to buy privacy data or increase the privacy data sharing value.
基金This work is supported by National Natural Science Foundation of China under Grant No.U1905211 and 61702103Natural Science Foundation of Fujian Province under Grant No.2020J01167 and 2020J01169.
文摘With the development of the Internet of Things(IoT),the massive data sharing between IoT devices improves the Quality of Service(QoS)and user experience in various IoT applications.However,data sharing may cause serious privacy leakages to data providers.To address this problem,in this study,data sharing is realized through model sharing,based on which a secure data sharing mechanism,called BP2P-FL,is proposed using peer-to-peer federated learning with the privacy protection of data providers.In addition,by introducing the blockchain to the data sharing,every training process is recorded to ensure that data providers offer high-quality data.For further privacy protection,the differential privacy technology is used to disturb the global data sharing model.The experimental results show that BP2P-FL has high accuracy and feasibility in the data sharing of various IoT applications.
基金supported by the National Natural Science Foundation of China under Grant 61972148。
文摘The traditional centralized data sharing systems have potential risks such as single point of failures and excessive working load on the central node.As a distributed and collaborative alternative,approaches based upon blockchain have been explored recently for Internet of Things(IoTs).However,the access from a legitimate user may be denied without the pre-defined policy and data update on the blockchain could be costly to the owners.In this paper,we first address these issues by incorporating the Accountable Subgroup Multi-Signature(ASM)algorithm into the Attribute-based Access Control(ABAC)method with Policy Smart Contract,to provide a finegrained and flexible solution.Next,we propose a policy-based Chameleon Hash algorithm that allows the data to be updated in a reliable and convenient way by the authorized users.Finally,we evaluate our work by comparing its performance with the benchmarks.The results demonstrate significant improvement on the effectiveness and efficiency.
基金supported by the China Postdoctoral Science Foundation (Grant Nos. 2021TQ0042, 2021M700435, 2021TQ0041)the National Natural Science Foundation of China (Grant No. 62102027)the Shandong Provincial Key Research and Development Program (2021CXGC010106)
文摘In this paper,we propose a novel fuzzy matching data sharing scheme named FADS for cloudedge communications.FADS allows users to specify their access policies,and enables receivers to obtain the data transmitted by the senders if and only if the two sides meet their defined certain policies simultaneously.Specifically,we first formalize the definition and security models of fuzzy matching data sharing in cloud-edge environments.Then,we construct a concrete instantiation by pairing-based cryptosystem and the privacy-preserving set intersection on attribute sets from both sides to construct a concurrent matching over the policies.If the matching succeeds,the data can be decrypted.Otherwise,nothing will be revealed.In addition,FADS allows users to dynamically specify the policy for each time,which is an urgent demand in practice.A thorough security analysis demonstrates that FADS is of provable security under indistinguishable chosen ciphertext attack(IND-CCA)in random oracle model against probabilistic polynomial-time(PPT)adversary,and the desirable security properties of privacy and authenticity are achieved.Extensive experiments provide evidence that FADS is with acceptable efficiency.
文摘Big data has a strong demand for a network infrastructure with the capability to support data sharing and retrieval efficiently. Information-centric networking (ICN) is an emerging approach to satisfy this demand, where big data is cached ubiquitously in the network and retrieved using data names. However, existing authentication and authorization schemes rely mostly on centralized servers to provide certification and mediation services for data retrieval. This causes considerable traffic overhead for the secure distributed sharing of data. To solve this problem, we employ identity-based cryptography (IBC) to propose a Distributed Authentication and Authorization Scheme (DAAS), where an identity-based signature (IBS) is used to achieve distributed verifications of the identities of publishers and users. Moreover, Ciphertext-Policy Attribnte-based encryption (CP-ABE) is used to enable the distributed and fine-grained authorization. DAAS consists of three phases: initialization, secure data publication, and secure data retrieval, which seamlessly integrate authentication and authorization with the in- terest/data communication paradigm in ICN. In particular, we propose trustworthy registration and Network Operator and Authority Manifest (NOAM) dissemination to provide initial secure registration and enable efficient authentication for global data retrieval. Meanwhile, Attribute Manifest (AM) distribution coupled with automatic attribute update is proposed to reduce the cost of attribute retrieval. We examine the performance of the proposed DAAS, which shows that it can achieve a lower bandwidth cost than existing schemes.
基金supported by the National Key Basic Research Program of China (973 Program) under Grant No. 2009CB320505the Fundamental Research Funds for the Central Universities under Grant No. 2011RC0508+2 种基金the National Natural Science Foundation of China under Grant No. 61003282China Next Generation Internet Project "Research and Trial on Evolving Next Generation Network Intelligence Capability Enhancement"the National Science and Technology Major Project "Research about Architecture of Mobile Internet" under Grant No. 2011ZX03002-001-01
文摘This paper aims to find a practical way of quantitatively representing the privacy of network data. A method of quantifying the privacy of network data anonymization based on similarity distance and entropy in the scenario involving multiparty network data sharing with Trusted Third Party (TTP) is proposed. Simulations are then conducted using network data from different sources, and show that the measurement indicators defined in this paper can adequately quantify the privacy of the network. In particular, it can indicate the effect of the auxiliary information of the adversary on privacy.
基金supported in part by National High-Tech Research and Development Program of China(“863”Program)under Grant No.2015AA016004National Natural Science Foundation of China under Grants No.61173154,61272451,61572380
文摘Data sharing is a main application of cloud computing. Some existing solutions are proposed to provide flexible access control for outsourced data in the cloud. However, few attentions have been paid to group-oriented data sharing when multiple data owners want to share their private data for cooperative purposes. In this paper, we put forward a new paradigm, referred to as secure, scalable and efficient multi-owner(SSEM) data sharing in clouds. The SSEM integrates identity-based encryption and asymmetric group key agreement to enable group-oriented access control for data owners in a many-to-many sharing pattern. Moreover, with SSEM, users can join in or leave from the group conveniently with the privacy of both group data and user data.We proposed the key-ciphertext homomorphism technique to construct an SSEM scheme with short ciphertexts. The security analysis shows that our SSEM scheme achieves data security against unauthorized accesses and collusion attacks. Both theoretical and experimental results confirm that our proposed scheme takes users little costs to share and access outsourced data in a group manner.
文摘With the rapid growth of Internet of Things(IoT)based models,and the lack amount of data makes cloud computing resources insufficient.Hence,edge computing-based techniques are becoming more popular in present research domains that makes data storage,and processing effective at the network edges.There are several advanced features like parallel processing and data perception are available in edge computing.Still,there are some challenges in providing privacy and data security over networks.To solve the security issues in Edge Computing,Hash-based Message Authentication Code(HMAC)algorithm is used to provide solutions for preserving data from various attacks that happens with the distributed network nature.This paper proposed a Trust Model for Secure Data Sharing(TM-SDS)with HMAC algorithm.Here,data security is ensured with local and global trust levels with the centralized processing of cloud and by conserving resources effectively.Further,the proposed model achieved 84.25%of packet delivery ratio which is better compared to existing models in the resulting phase.The data packets are securely transmitted between entities in the proposed model and results showed that proposed TM-SDS model outperforms the existing models in an efficient manner.
文摘The Cloud Computing Environment(CCE)developed for using the dynamic cloud is the ability of software and services likely to grow with any business.It has transformed the methodology for storing the enterprise data,accessing the data,and Data Sharing(DS).Big data frame a constant way of uploading and sharing the cloud data in a hierarchical architecture with different kinds of separate privileges to access the data.With the requirement of vast volumes of storage area in the CCEs,capturing a secured data access framework is an important issue.This paper proposes an Improved Secure Identification-based Multilevel Structure of Data Sharing(ISIMSDS)to hold the DS of big data in CCEs.The complex file partitioning technique is proposed to verify the access privilege context for sharing data in complex CCEs.An access control Encryption Method(EM)is used to improve the encryption.The Complexity is measured to increase the authentication standard.The active attack is protected using this ISIMSDS methodology.Our proposed ISIMSDS method assists in diminishing the Complexity whenever the user’s population is increasing rapidly.The security analysis proves that the proposed ISIMSDS methodology is more secure against the chosen-PlainText(PT)attack and provides more efficient computation and storage space than the related methods.The performance of the proposed ISIMSDS methodology provides more efficiency in communication costs such as encryption,decryption,and retrieval of the data.
文摘Remote data monitoring system which adopts virtual instrument usually applies data sharing, acquisition and remote transmission technology via internet. It is able to finish concurrent data acquisition and processing for multi-user and multi-task and also build a personalized virtual testing environment for more people but with fewer instruments. In this paper, we' 11 elaborate on the design and implementation of information sharing platform through a typical example of how to build multi-user concurrent virtual testing environment based on the virtnal software LabVIEW.
文摘The Internet technology has already changed the Information Society in profound ways, and will continue to do so. Nowadays many people foresee that there is a similar trajectory for the next generation of Internet - Grid Technology. As an emerging computational and networking infrastructure, Grid Computing is designed to provide pervasive, uniform and reliable access to data, computational and human resources distributed in a dynamic, heterogeneous environment. On the other hand, the development of Geographic Information System (GIS) has been highly influenced by the evolution of information technology such as the Internet, telecommunications, software and various types of computing technology. In particular, in the distributed GIS domain, the development However, due to the closed and centralized has made significant impact in the past decade. legacy of the architecture and the lack of interoperability, modularity, and flexibility, current distributed GIS still cannot fully accommodate the distributed, dynamic, heterogeneous and speedy development in network and computing environments. Hence, the development of a high performance distributed GIS system is still a challenging task. So, the development of Grid computing technology undoubtedly provides a unique opportunity for distributed GIS, and a Grid Computing based GIS paradigm becomes inevitable. This paper proposes a new computing platform based distributed GIS framework - the Grid Geographic Information System (G^2IS).
文摘An M_(S)7.4 earthquake struck west China in Maduo county,Guoluo prefecture,Qinghai province on May 22,2021,at 2:04 Beijing time(18:04 UTC on May 21,2021),which broke the quiet period of Chinese mainland for 1382 days without earthquakes of magnitude 7 or higher.The analysis of the seismic data sequence would play an important role in the in-depth study of the Maduo earthquake and the Bayan Har block.The Institute of Geophysics,China Earthquake Administration(CEA),compiled observation data recorded through 57 broadband seismometers within 500 km of the earthquake epicenter and intended to share for further researches in earthquake science community.The shared dataset included waveforms of the event and its sequence with magnitudes of 3.0 or higher that occurred between May 22-31,2021 with a sampling rate of 100 sps along with the continuous waveforms of 20 Hz and 100 Hz.Additionally,the seismic instrument response files also were shared.The event and continuous waveform records could be downloaded by submitting a request through the web platform of the Earthquake Science Data Center of the Institute of Geophysics,CEA(www.esdc.ac.cn).