期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Efficient Processing of Skyline Group Queries over a Data Stream 被引量:1
1
作者 Xi Guo Hailing Li +2 位作者 Aziguli Wulamu Yonghong Xie Yajing Fu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2016年第1期29-39,共11页
In this paper, we study the skyline group problem over a data stream. An object can dominate another object if it is not worse than the other object on all attributes and is better than the other object on at least on... In this paper, we study the skyline group problem over a data stream. An object can dominate another object if it is not worse than the other object on all attributes and is better than the other object on at least one attribute. If an object cannot be dominated by any other object, it is a skyline object. The skyline group problem involves finding k-item groups that cannot be dominated by any other k-item group. Existing algorithms designed to find skyline groups can only process static data. However, data changes as a stream with time in many applications,and algorithms should be designed to support skyline group queries on dynamic data. In this paper, we propose new algorithms to find skyline groups over a data stream. We use data structures, namely a hash table, dominance graph, and matrix, to store dominance information and update results incrementally. We conduct experiments on synthetic datasets to evaluate the performance of the proposed algorithms. The experimental results show that our algorithms can efficiently find skyline groups over a data stream. 展开更多
关键词 skyline skyline group data streams query processing
原文传递
Adaptive watermark generation mechanism based on time series prediction for stream processing 被引量:1
2
作者 Yang SONG Yunchun LI +3 位作者 Hailong YANG Jun XU Zerong LUAN Wei LI 《Frontiers of Computer Science》 SCIE EI CSCD 2021年第6期59-73,共15页
The data stream processing framework processes the stream data based on event-time to ensure that the request can be responded to in real-time.In reality,streaming data usually arrives out-of-order due to factors such... The data stream processing framework processes the stream data based on event-time to ensure that the request can be responded to in real-time.In reality,streaming data usually arrives out-of-order due to factors such as network delay.The data stream processing framework commonly adopts the watermark mechanism to address the data disorderedness.Watermark is a special kind of data inserted into the data stream with a timestamp,which helps the framework to decide whether the data received is late and thus be discarded.Traditional watermark generation strategies are periodic;they cannot dynamically adjust the watermark distribution to balance the responsiveness and accuracy.This paper proposes an adaptive watermark generation mechanism based on the time series prediction model to address the above limitation.This mechanism dynamically adjusts the frequency and timing of watermark distribution using the disordered data ratio and other lateness properties of the data stream to improve the system responsiveness while ensuring acceptable result accuracy.We implement the proposed mechanism on top of Flink and evaluate it with realworld datasets.The experiment results show that our mechanism is superior to the existing watermark distribution strategies in terms of both system responsiveness and result accuracy. 展开更多
关键词 data stream processing WATERMARK time series based prediction dynamic adjustment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部