期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
THRFuzzy:Tangential holoentropy-enabled rough fuzzy classifier to classification of evolving data streams 被引量:1
1
作者 Jagannath E.Nalavade T.Senthil Murugan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1789-1800,共12页
The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside... The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers. 展开更多
关键词 data stream classification fuzzy rough set tangential holoentropy concept change
下载PDF
Incremental Data Stream Classification with Adaptive Multi-Task Multi-View Learning
2
作者 Jun Wang Maiwang Shi +4 位作者 Xiao Zhang Yan Li Yunsheng Yuan Chengei Yang Dongxiao Yu 《Big Data Mining and Analytics》 EI CSCD 2024年第1期87-106,共20页
With the enhancement of data collection capabilities,massive streaming data have been accumulated in numerous application scenarios.Specifically,the issue of classifying data streams based on mobile sensors can be for... With the enhancement of data collection capabilities,massive streaming data have been accumulated in numerous application scenarios.Specifically,the issue of classifying data streams based on mobile sensors can be formalized as a multi-task multi-view learning problem with a specific task comprising multiple views with shared features collected from multiple sensors.Existing incremental learning methods are often single-task single-view,which cannot learn shared representations between relevant tasks and views.An adaptive multi-task multi-view incremental learning framework for data stream classification called MTMVIS is proposed to address the above challenges,utilizing the idea of multi-task multi-view learning.Specifically,the attention mechanism is first used to align different sensor data of different views.In addition,MTMVIS uses adaptive Fisher regularization from the perspective of multi-task multi-view learning to overcome catastrophic forgetting in incremental learning.Results reveal that the proposed framework outperforms state-of-the-art methods based on the experiments on two different datasets with other baselines. 展开更多
关键词 data stream classification mobile sensors multi-task multi-view learning incremental learning
原文传递
Clustering feature decision trees for semi-supervised classification from high-speed data streams 被引量:4
3
作者 Wen-hua XU Zheng QIN Yang CHANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第8期615-628,共14页
Most stream data classification algorithms apply the supervised learning strategy which requires massive labeled data.Such approaches are impractical since labeled data are usually hard to obtain in reality.In this pa... Most stream data classification algorithms apply the supervised learning strategy which requires massive labeled data.Such approaches are impractical since labeled data are usually hard to obtain in reality.In this paper,we build a clustering feature decision tree model,CFDT,from data streams having both unlabeled and a small number of labeled examples.CFDT applies a micro-clustering algorithm that scans the data only once to provide the statistical summaries of the data for incremental decision tree induction.Micro-clusters also serve as classifiers in tree leaves to improve classification accuracy and reinforce the any-time property.Our experiments on synthetic and real-world datasets show that CFDT is highly scalable for data streams while gener-ating high classification accuracy with high speed. 展开更多
关键词 Clustering feature vector Decision tree Semi-supervised learning Stream data classification Very fast decision tree
原文传递
Exploiting Empirical Variance for Data Stream Classification
4
作者 ZIA-UR REHMAN Muhammad 李天瑞 李涛 《Journal of Shanghai Jiaotong university(Science)》 EI 2012年第2期245-250,共6页
Classification,using the decision tree algorithm,is a widely studied problem in data streams.The challenge is when to split a decision node into multiple leaves.Concentration inequalities,that exploit variance informa... Classification,using the decision tree algorithm,is a widely studied problem in data streams.The challenge is when to split a decision node into multiple leaves.Concentration inequalities,that exploit variance information such as Bernstein's and Bennett's inequalities,are often substantially strict as compared with Hoeffding's bound which disregards variance.Many machine learning algorithms for stream classification such as very fast decision tree(VFDT) learner,AdaBoost and support vector machines(SVMs),use the Hoeffding's bound as a performance guarantee.In this paper,we propose a new algorithm based on the recently proposed empirical Bernstein's bound to achieve a better probabilistic bound on the accuracy of the decision tree.Experimental results on four synthetic and two real world data sets demonstrate the performance gain of our proposed technique. 展开更多
关键词 Hoeffding and Bernstein’s bounds data stream classification decision tree anytime algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部