期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
SMT: A SPATIAL MAPPING TOOL FOR STATISTICAL DATA SET
1
作者 Wang Xuejun Department of Urban and Environmental Sciences Peking University, Beijing 100871 People’s Republic of China 《Journal of Geographical Sciences》 SCIE CSCD 1997年第1期85-92,共8页
The statistical map is usually used to indicate the quantitative features of various socio economic phenomena among regions on the base map of administrative divisions or on other base maps which connected with stati... The statistical map is usually used to indicate the quantitative features of various socio economic phenomena among regions on the base map of administrative divisions or on other base maps which connected with statistical unit. Making use of geographic information system (GIS) techniques, and supported by Auto CAD software, the author of this paper has put forward a practical method for making statistical map and developed a software (SMT) for the making of small scale statistical map using C language. 展开更多
关键词 statistical map geographic information system topological data structure.
下载PDF
Performance Evaluation of Topologies for Multi-Domain Software-Defined Networking
2
作者 Jiangyuan Yao Weiping Yang +5 位作者 Shuhua Weng Minrui Wang Zheng Jiang Deshun Li Yahui Li Xingcan Cao 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期741-755,共15页
Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,t... Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,the network topology of each control domain of SDN will affect the performance of the multidomain network,so performance evaluation is required before the deployment of the multi-domain SDN.Besides,there is a high cost to build real multi-domain SDN networks with different topologies,so it is necessary to use simulation testing methods to evaluate the topological performance of the multi-domain SDN network.As there is a lack of existing methods to construct a multi-domain SDN simulation network for the tool to evaluate the topological performance automatically,this paper proposes an automated multi-domain SDN topology performance evaluation framework,which supports multiple types of SDN network topologies in cooperating to construct a multi-domain SDN network.The framework integrates existing single-domain SDN simulation tools with network performance testing tools to realize automated performance evaluation of multidomain SDN network topologies.We designed and implemented a Mininet-based simulation tool that can connect multiple controllers and run user-specified topologies in multiple SDN control domains to build and test multi-domain SDN networks faster.Then,we used the tool to perform performance tests on various data center network topologies in single-domain and multi-domain SDN simulation environments.Test results show that Space Shuffle has the most stable performance in a single-domain environment,and Fat-tree has the best performance in a multi-domain environment.Also,this tool has the characteristics of simplicity and stability,which can meet the needs of multi-domain SDN topology performance evaluation. 展开更多
关键词 Software-defined networking emulation network multi-domain SDN data center network topology
下载PDF
Overcoming a recent impasse in the application of artificial neural networks as solid oxide fuel cells simulator with computational topology
3
作者 Grzegorz Brus 《Energy and AI》 2023年第4期451-462,共12页
In recent years,the solid oxide fuel cell(SOFC)scientific community has invested continuous efforts to employ artificial intelligence methods to design and develop new energy systems.It is crucial to gain a better und... In recent years,the solid oxide fuel cell(SOFC)scientific community has invested continuous efforts to employ artificial intelligence methods to design and develop new energy systems.It is crucial to gain a better understanding of the microscale phenomena that occur in the electrodes.In this review,we present a literature review of the field,discussing the limitations of including microstructural data in existing research and possible research directions to overcome them.This review focuses on a particular research area that uses artificial neural networks(ANNs)to predict the performance of SOFCs.Herein,we show that neural networks are used not only to conform to the newest trends but also for improving the design and providing a better understanding of microscale phenomena that occur in the electrodes.The review concludes by highlighting topological data analysis as a promising area of research that can incorporate detailed microstructure characterization in ANNs for performance prediction. 展开更多
关键词 Solid oxide fuel cells Artificial neural networks Mathematical modeling Topological data analysis
原文传递
Biomolecular Topology:Modelling and Analysis 被引量:1
4
作者 Jian LIU Ke-Lin XIA +2 位作者 Jie WU Stephen Shing-Toung YAU Guo-Wei WEI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2022年第10期1901-1938,共38页
With the great advancement of experimental tools,a tremendous amount of biomolecular data has been generated and accumulated in various databases.The high dimensionality,structural complexity,the nonlinearity,and enta... With the great advancement of experimental tools,a tremendous amount of biomolecular data has been generated and accumulated in various databases.The high dimensionality,structural complexity,the nonlinearity,and entanglements of biomolecular data,ranging from DNA knots,RNA secondary structures,protein folding configurations,chromosomes,DNA origami,molecular assembly,to others at the macromolecular level,pose a severe challenge in their analysis and characterization.In the past few decades,mathematical concepts,models,algorithms,and tools from algebraic topology,combinatorial topology,computational topology,and topological data analysis,have demonstrated great power and begun to play an essential role in tackling the biomolecular data challenge.In this work,we introduce biomolecular topology,which concerns the topological problems and models originated from the biomolecular systems.More specifically,the biomolecular topology encompasses topological structures,properties and relations that are emerged from biomolecular structures,dynamics,interactions,and functions.We discuss the various types of biomolecular topology from structures(of proteins,DNAs,and RNAs),protein folding,and protein assembly.A brief discussion of databanks(and databases),theoretical models,and computational algorithms,is presented.Further,we systematically review related topological models,including graphs,simplicial complexes,persistent homology,persistent Laplacians,de Rham-Hodge theory,Yau-Hausdorff distance,and the topology-based machine learning models. 展开更多
关键词 Persistent homology topological data analysis biomolecular topology protein structure machine learning
原文传递
Topological Data Analysis of Potentiometric Multisensor Measurements in Treated Wastewater
5
作者 Valeria Belikova Vitaly Panchuk +3 位作者 Evgeny Legin Anastasia Melenteva Andrey Legin Dmitry Kirsanov 《Journal of Analysis and Testing》 EI 2018年第4期291-298,共8页
In this study,a multisensor system consisting of 23 potentiometric sensors was applied for long-term online measurements in outlet flow of the water treatment plant.Within 1 month of continuous measurements,the data s... In this study,a multisensor system consisting of 23 potentiometric sensors was applied for long-term online measurements in outlet flow of the water treatment plant.Within 1 month of continuous measurements,the data set of more than 295,000 observations was acquired.The processing of this dataset with conventional chemometric tools was cumbersome and not very informative.Topological data analysis(TDA)was recently suggested in chemometric literature to deal with large spectroscopic datasets.In this research,we explore the opportunities of TDA with respect to multisensor data with only 23 variables.It is shown that TDA allows for convenient data visualization,studying the evolution of water quality during the measurements and tracking the periodical structure in the data related to the water quality depending on the time of the day and the day of the week.TDA appears to be a valuable tool for multisensor data exploration. 展开更多
关键词 Topological data analysis Multisensor systems Potentiometric sensors Water quality
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部