期刊文献+
共找到131,830篇文章
< 1 2 250 >
每页显示 20 50 100
A comparative study of data-driven battery capacity estimation based on partial charging curves 被引量:1
1
作者 Chuanping Lin Jun Xu +5 位作者 Delong Jiang Jiayang Hou Ying Liang Xianggong Zhang Enhu Li Xuesong Mei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期409-420,I0010,共13页
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar... With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves. 展开更多
关键词 Lithium-ion battery Partial charging curves Capacity estimation data-driven Sampling frequency
下载PDF
Expert Experience and Data-Driven Based Hybrid Fault Diagnosis for High-SpeedWire Rod Finishing Mills 被引量:1
2
作者 Cunsong Wang Ningze Tang +3 位作者 Quanling Zhang Lixin Gao Haichen Yin Hao Peng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1827-1847,共21页
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo... The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system. 展开更多
关键词 High-speed wire rod finishing mills expert experience data-driven fault diagnosis
下载PDF
Data-driven casting defect prediction model for sand casting based on random forest classification algorithm 被引量:1
3
作者 Bang Guan Dong-hong Wang +3 位作者 Da Shu Shou-qin Zhu Xiao-yuan Ji Bao-de Sun 《China Foundry》 SCIE EI CAS CSCD 2024年第2期137-146,共10页
The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was p... The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%. 展开更多
关键词 sand casting process data-driven method classification model quality prediction feature importance
下载PDF
An efficient data-driven global sensitivity analysis method of shale gas production through convolutional neural network
4
作者 Liang Xue Shuai Xu +4 位作者 Jie Nie Ji Qin Jiang-Xia Han Yue-Tian Liu Qin-Zhuo Liao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2475-2484,共10页
The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively... The shale gas development process is complex in terms of its flow mechanisms and the accuracy of the production forecasting is influenced by geological parameters and engineering parameters.Therefore,to quantitatively evaluate the relative importance of model parameters on the production forecasting performance,sensitivity analysis of parameters is required.The parameters are ranked according to the sensitivity coefficients for the subsequent optimization scheme design.A data-driven global sensitivity analysis(GSA)method using convolutional neural networks(CNN)is proposed to identify the influencing parameters in shale gas production.The CNN is trained on a large dataset,validated against numerical simulations,and utilized as a surrogate model for efficient sensitivity analysis.Our approach integrates CNN with the Sobol'global sensitivity analysis method,presenting three key scenarios for sensitivity analysis:analysis of the production stage as a whole,analysis by fixed time intervals,and analysis by declining rate.The findings underscore the predominant influence of reservoir thickness and well length on shale gas production.Furthermore,the temporal sensitivity analysis reveals the dynamic shifts in parameter importance across the distinct production stages. 展开更多
关键词 Shale gas Global sensitivity Convolutional neural network data-driven
下载PDF
Data-Driven Learning Control Algorithms for Unachievable Tracking Problems
5
作者 Zeyi Zhang Hao Jiang +1 位作者 Dong Shen Samer S.Saab 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期205-218,共14页
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in... For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings. 展开更多
关键词 data-driven algorithms incomplete information iterative learning control gradient information unachievable problems
下载PDF
Data-driven prediction of dimensionless quantities for semi-infinite target penetration by integrating machine-learning and feature selection methods
6
作者 Qingqing Chen Xinyu Zhang +2 位作者 Zhiyong Wang Jie Zhang Zhihua Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期105-124,共20页
This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod ... This study employs a data-driven methodology that embeds the principle of dimensional invariance into an artificial neural network to automatically identify dominant dimensionless quantities in the penetration of rod projectiles into semi-infinite metal targets from experimental measurements.The derived mathematical expressions of dimensionless quantities are simplified by the examination of the exponent matrix and coupling relationships between feature variables.As a physics-based dimension reduction methodology,this way reduces high-dimensional parameter spaces to descriptions involving only a few physically interpretable dimensionless quantities in penetrating cases.Then the relative importance of various dimensionless feature variables on the penetration efficiencies for four impacting conditions is evaluated through feature selection engineering.The results indicate that the selected critical dimensionless feature variables by this synergistic method,without referring to the complex theoretical equations and aiding in the detailed knowledge of penetration mechanics,are in accordance with those reported in the reference.Lastly,the determined dimensionless quantities can be efficiently applied to conduct semi-empirical analysis for the specific penetrating case,and the reliability of regression functions is validated. 展开更多
关键词 data-driven dimensional analysis PENETRATION Semi-infinite metal target Dimensionless numbers Feature selection
下载PDF
Data-driven diagnosis of high temperature PEM fuel cells based on the electrochemical impedance spectroscopy: Robustness improvement and evaluation
7
作者 Dan Yu Xingjun Li +2 位作者 Samuel Simon Araya Simon Lennart Sahlin Vincenzo Liso 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期544-558,共15页
Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a cr... Utilizing machine learning techniques for data-driven diagnosis of high temperature PEM fuel cells is beneficial and meaningful to the system durability. Nevertheless, ensuring the robustness of diagnosis remains a critical and challenging task in real application. To enhance the robustness of diagnosis and achieve a more thorough evaluation of diagnostic performance, a robust diagnostic procedure based on electrochemical impedance spectroscopy (EIS) and a new method for evaluation of the diagnosis robustness was proposed and investigated in this work. To improve the diagnosis robustness: (1) the degradation mechanism of different faults in the high temperature PEM fuel cell was first analyzed via the distribution of relaxation time of EIS to determine the equivalent circuit model (ECM) with better interpretability, simplicity and accuracy;(2) the feature extraction was implemented on the identified parameters of the ECM and extra attention was paid to distinguishing between the long-term normal degradation and other faults;(3) a Siamese Network was adopted to get features with higher robustness in a new embedding. The diagnosis was conducted using 6 classic classification algorithms—support vector machine (SVM), K-nearest neighbor (KNN), logistic regression (LR), decision tree (DT), random forest (RF), and Naive Bayes employing a dataset comprising a total of 1935 collected EIS. To evaluate the robustness of trained models: (1) different levels of errors were added to the features for performance evaluation;(2) a robustness coefficient (Roubust_C) was defined for a quantified and explicit evaluation of the diagnosis robustness. The diagnostic models employing the proposed feature extraction method can not only achieve the higher performance of around 100% but also higher robustness for diagnosis models. Despite the initial performance being similar, the KNN demonstrated a superior robustness after feature selection and re-embedding by triplet-loss method, which suggests the necessity of robustness evaluation for the machine learning models and the effectiveness of the defined robustness coefficient. This work hopes to give new insights to the robust diagnosis of high temperature PEM fuel cells and more comprehensive performance evaluation of the data-driven method for diagnostic application. 展开更多
关键词 PEM fuel cell data-driven diagnosis Robustness improvement and evaluation Electrochemical impedance spectroscopy
下载PDF
Impact of Sharing Marketing on Marketing Willingness of Employees in Internet Decoration Industry
8
作者 Zhongxin LI 《Asian Agricultural Research》 2024年第1期10-13,共4页
With the development of information technology,sharing marketing,as an innovative marketing method,plays an important role in promoting the marketing willingness and enthusiasm of employees in the Internet decoration ... With the development of information technology,sharing marketing,as an innovative marketing method,plays an important role in promoting the marketing willingness and enthusiasm of employees in the Internet decoration industry.Based on the data obtained from the ques-tionnaire survey,this paper makes an empirical analysis of the impact of the economic value,social value,perceived ease of use,perceived convenience,enabling conditions and subjective norms of sharing marketing on the marketing willingness of employees in the Internet decoration industry.The results showed that the questionnaire had good internal consistency and construct validity.Through empirical analysis,it can be found that the economic value,social value,perceived ease of use,perceived convenience,enabling conditions and subjective norms of sharing marketing have a significant positive impact on employees'marketing willingness. 展开更多
关键词 marketING Sharing marketing Internet decoration marketing willingness
下载PDF
Renewable Polymers in Biomedical Applications:From the Bench to the Market
9
作者 Rauany Cristina Lopes Tamires Nossa +3 位作者 Wilton Rogério Lustri Gabriel Lombardo Maria Inés Errea Eliane Trovatti 《Journal of Renewable Materials》 EI CAS 2024年第4期643-666,共24页
Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contri... Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contributing to the improvement of life quality,mainly in drug release systems and in regenerative medicine.Formulations using natural polymer,nano and microscale particles preparation,composites,blends and chemical modification strategies have been used to improve their properties for clinical application.Although many studies have been carried out with these natural polymers,the way to reach the market is long and only very few of them become commercially available.Vegetable cellulose,bacterial cellulose,chitosan,poly(lactic acid)and starch can be found among the most studied polymers for biological applications,some with several derivatives already established in the market,and others with potential for such.In this scenario this work aims to describe the properties and potential of these renewable polymers for biomedical applications,the routes from the bench to the market,and the perspectives for future developments. 展开更多
关键词 POLYMERS RENEWABLE biomedical applications market
下载PDF
A review of data-driven whole-life state of health prediction for lithium-ion batteries:Data preprocessing,aging characteristics,algorithms,and future challenges
10
作者 Yanxin Xie Shunli Wang +3 位作者 Gexiang Zhang Paul Takyi-Aninakwa Carlos Fernandez Frede Blaabjerg 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期630-649,I0013,共21页
Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance ... Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research. 展开更多
关键词 Lithium-ion batteries Whole life cycle Aging mechanism data-driven approach State of health Battery management system
下载PDF
Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
11
作者 Yunfeng Hu Chong Zhang +4 位作者 Bo Wang Jing Zhao Xun Gong Jinwu Gao Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期344-361,共18页
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ... Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning control(ILC) scheme based on the zeroing neural networks(ZNNs) is proposed. First, the equivalent dynamic linearization data model is obtained by means of dynamic linearization technology, which exists theoretically in the iteration domain. Then, the iterative extended state observer(IESO) is developed to estimate the disturbance and the coupling between systems, and the decoupled dynamic linearization model is obtained for the purpose of controller synthesis. To solve the zero-seeking tracking problem with inherent tolerance of noise,an ILC based on noise-tolerant modified ZNN is proposed. The strict assumptions imposed on the initialization conditions of each iteration in the existing ILC methods can be absolutely removed with our method. In addition, theoretical analysis indicates that the modified ZNN can converge to the exact solution of the zero-seeking tracking problem. Finally, a generalized example and an application-oriented example are presented to verify the effectiveness and superiority of the proposed process. 展开更多
关键词 Adaptive control control system synthesis data-driven iterative learning control neurocontroller nonlinear discrete time systems
下载PDF
A hybrid physics-informed data-driven neural network for CO_(2) storage in depleted shale reservoirs
12
作者 Yan-Wei Wang Zhen-Xue Dai +3 位作者 Gui-Sheng Wang Li Chen Yu-Zhou Xia Yu-Hao Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期286-301,共16页
To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) s... To reduce CO_(2) emissions in response to global climate change,shale reservoirs could be ideal candidates for long-term carbon geo-sequestration involving multi-scale transport processes.However,most current CO_(2) sequestration models do not adequately consider multiple transport mechanisms.Moreover,the evaluation of CO_(2) storage processes usually involves laborious and time-consuming numerical simulations unsuitable for practical prediction and decision-making.In this paper,an integrated model involving gas diffusion,adsorption,dissolution,slip flow,and Darcy flow is proposed to accurately characterize CO_(2) storage in depleted shale reservoirs,supporting the establishment of a training database.On this basis,a hybrid physics-informed data-driven neural network(HPDNN)is developed as a deep learning surrogate for prediction and inversion.By incorporating multiple sources of scientific knowledge,the HPDNN can be configured with limited simulation resources,significantly accelerating the forward and inversion processes.Furthermore,the HPDNN can more intelligently predict injection performance,precisely perform reservoir parameter inversion,and reasonably evaluate the CO_(2) storage capacity under complicated scenarios.The validation and test results demonstrate that the HPDNN can ensure high accuracy and strong robustness across an extensive applicability range when dealing with field data with multiple noise sources.This study has tremendous potential to replace traditional modeling tools for predicting and making decisions about CO_(2) storage projects in depleted shale reservoirs. 展开更多
关键词 Deep learning Physics-informed data-driven neural network Depleted shale reservoirs CO_(2)storage Transport mechanisms
下载PDF
Exploring the impacts of major events on the systemic risk of the international energy market
13
作者 Ming-Tao Zhao Su-Wan Lu Lian-Biao Cui 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1444-1457,共14页
This study examines the systemic risk caused by major events in the international energy market(IEM)and proposes a management strategy to mitigate it. Using the tail-event driven network(TENET)method, this study const... This study examines the systemic risk caused by major events in the international energy market(IEM)and proposes a management strategy to mitigate it. Using the tail-event driven network(TENET)method, this study constructed a tail-risk spillover network(TRSN) of IEM and simulated the dynamic spillover tail-risk process through the cascading failure mechanism. The study found that renewable energy markets contributed more to systemic risk during the Paris Agreement and the COVID-19pandemic, while fossil energy markets played a larger role during the Russia-Ukraine conflict. This study identifies systemically important markets(SM) and critical tail-risk spillover paths as potential sources of systemic risk. The research confirms that cutting off the IEM risk spillover path can greatly reduce systemic risk and the influence of SM. This study offers insights into the management of systemic risk in IEM and provides policy recommendations to reduce the impact of shock events. 展开更多
关键词 International energy market Tail-risk spillover Cascading failure mechanism Systemic risk management
下载PDF
Activity Data and Emission Factor for Forestry and Other Land Use Change Subsector to Enhance Carbon Market Policy and Action in Malawi
14
作者 Edward Missanjo Henry Kadzuwa 《Journal of Environmental Protection》 2024年第4期401-414,共14页
Activity data and emission factors are critical for estimating greenhouse gas emissions and devising effective climate change mitigation strategies. This study developed the activity data and emission factor in the Fo... Activity data and emission factors are critical for estimating greenhouse gas emissions and devising effective climate change mitigation strategies. This study developed the activity data and emission factor in the Forestry and Other Land Use Change (FOLU) subsector in Malawi. The results indicate that “forestland to cropland,” and “wetland to cropland,” were the major land use changes from the year 2000 to the year 2022. The forestland steadily declined at a rate of 13,591 ha (0.5%) per annum. Similarly, grassland declined at the rate of 1651 ha (0.5%) per annum. On the other hand, cropland, wetland, and settlements steadily increased at the rate of 8228 ha (0.14%);5257 ha (0.17%);and 1941 ha (8.1%) per annum, respectively. Furthermore, the results indicate that the “grassland to forestland” changes were higher than the “forestland to grassland” changes, suggesting that forest regrowth was occurring. On the emission factor, the results interestingly indicate that there was a significant increase in carbon sequestration in the FOLU subsector from the year 2011 to 2022. Carbon sequestration increased annually by 13.66 ± 0.17 tCO<sub>2</sub> e/ha/yr (4.6%), with an uncertainty of 2.44%. Therefore, it can be concluded that there is potential for a Carbon market in Malawi. 展开更多
关键词 Activity Data Emission Factor Climate Change Forestland Carbon market
下载PDF
Analyzing the Wind-Dominant Electricity Market under Coexistence of Regulated and Deregulated Power Trading
15
作者 Yirui Li Dongliang Xiao +2 位作者 Haoyong Chen Weijun Cai Josue Campos do Prado 《Energy Engineering》 EI 2024年第8期2093-2127,共35页
Currently,both regulated and deregulated power trading exist in China’s power system,which has caused imbalanced funds in the electricity market.In this paper,a simulation analysis of the electricity market with wind... Currently,both regulated and deregulated power trading exist in China’s power system,which has caused imbalanced funds in the electricity market.In this paper,a simulation analysis of the electricity market with wind energy resources is conducted,and the calculation methods of unbalanced funds are investigated systematically.In detail,the calculation formulas of unbalanced funds are illustrated based on their definition,and a two-track electricity market clearing model is established.Firstly,the concept of the dual-track system is explained,and the specific calculation formulas of various types of unbalanced funds are provided.Next,considering the renewable energy consumption,the market clearing model based on DC power flow is constructed and solved;by combining fitting methods of mid-and long-term curves,the unbalanced funds are calculated based on clearing results and formulas. 展开更多
关键词 Dual-track system electricity market renewable energy unbalanced funds
下载PDF
Impact of the carbon market on investment benefits of power-grid enterprises in China: a system dynamics analysis
16
作者 Wanning Mao Liang Hu +3 位作者 Wenjuan Niu Xiaorong Sun Lili Hao Abimbola Susan Ajagun 《Global Energy Interconnection》 EI CSCD 2024年第4期402-414,共13页
The power grid,as the hub connecting the power supply and consumption sides,plays an important role in achieving carbon neutrality in China.In emerging carbon markets,assessing the investment benefits of power-grid en... The power grid,as the hub connecting the power supply and consumption sides,plays an important role in achieving carbon neutrality in China.In emerging carbon markets,assessing the investment benefits of power-grid enterprises is essential.Thus,studying the impact of the carbon market on the investment and operation of powergrid enterprises is key to ensuring their efficient operation.Notably,few studies have examined the interaction between the carbon and electricity markets using system dynamics models,highlighting a research gap in this area.This study investigates the impact of the carbon market on the investment of power-grid enterprises using a novel evaluation system based on a system dynamics model that considers carbon-emissions from an established carbon-emission accounting model.First,an index system for benefit evaluation was constructed from six aspects:financing ability,economic benefit,reliability,social responsibility,user satisfaction,and carbon-emissions.A system dynamics model was then developed to reflect the causal feedback relationship between the impact of the carbon market on the investment and operation of power-grid enterprises.The simulation results of a provincial power-grid enterprise analyze comprehensive investment evaluation benefits over a 10-year period and the impact of carbon emissions on the investment and operation of power-grid enterprises.This study provides guidelines for the benign development of power-grid enterprises within the context of the carbon market. 展开更多
关键词 Carbon market Power-grid enterprises Investment benefit evaluation System dynamics analysis
下载PDF
With Growth in Birth Population,Maternity and Children's Market Picks Up
17
作者 Lily Wang 《China's Foreign Trade》 2024年第5期56-58,共3页
In recent years,China's birth population has continued to decline,causing concern from all walks of life.However,data for the first half of2024 show a slight recovery in the number of births in some regions,a phen... In recent years,China's birth population has continued to decline,causing concern from all walks of life.However,data for the first half of2024 show a slight recovery in the number of births in some regions,a phenomenon that has brought new vitality to the maternity and children's market.Although this rise may be a short-term"spring",it has injected hope into related industries. 展开更多
关键词 POPULATION GROWTH market
下载PDF
The "Black Myth" Marks a New Milestone for China-Made Games in Overseas Market
18
作者 Joyce Lee 《China's Foreign Trade》 2024年第5期41-42,共2页
Since its first launch on August 20th,the game"Black Myth:Wukong"has broken many previous records for domestic single-player games,and also provides a chance for global game players to see Chinese games as a... Since its first launch on August 20th,the game"Black Myth:Wukong"has broken many previous records for domestic single-player games,and also provides a chance for global game players to see Chinese games as among the world's best games.The number of online users on the entire platform exceeded3 million at its most,and more than10 million copies of the games were sold within the first four days after the launch.It has received more than 270thousand reviews in total and 96%positive reviews on the Steam platform,providing a chance for global game players to enjoy the best of Chinese games。 展开更多
关键词 MILES GAMES market
下载PDF
China Intensifies Monetary Policy Adjustments and Boosts Market Confidence
19
作者 Lily Wang 《China's Foreign Trade》 2024年第5期26-28,共3页
On September 27,the People's Bank of China (hereinafter referred to as the"central bank") announced that,from September 27,2024,the RRR (required reserve ratio)of financial institutions would be lowered ... On September 27,the People's Bank of China (hereinafter referred to as the"central bank") announced that,from September 27,2024,the RRR (required reserve ratio)of financial institutions would be lowered by 0.5 percentage points (excluding those that are subject to an RRR of 5%).The weighted average required reserve ratio for financial institutions is about 6.6% after this cut.At the same time,the central bank also announced that from September27,the interest rate for 7-day reverse repo operations in the open market will be adjusted from1.70%to 1.50%. 展开更多
关键词 market FINANCIAL operations
下载PDF
Harnessing the Market Potential of the Bamboo Industry in Central Luzon, Philippines: An Analysis of the Internal and External Environment
20
作者 Edgelly Galvez Vitug Sarah Calma Alvarez 《Open Journal of Ecology》 2024年第5期395-418,共24页
The bamboo industry in Central Luzon holds significant promise for economic development and environmental sustainability. This study aims to analyze the internal and external factors influencing the bamboo industry in... The bamboo industry in Central Luzon holds significant promise for economic development and environmental sustainability. This study aims to analyze the internal and external factors influencing the bamboo industry in the region through SWOT and PESTLE analyses. Based on a focus group discussion involving key industry players, the study explores the industry’s strengths, weaknesses, opportunities, and threats, as well as political, economic, social, technological, legal, and environmental factors. Findings reveal the importance of comprehensive strategies that address political stability, economic growth, consumer awareness, technological advancement, legal compliance, and environmental sustainability. Recommendations include capacity-building for production and marketing, the establishment of bamboo treatment facilities, and advocacy for supportive policies. By addressing these factors, the bamboo industry in Central Luzon can realize its potential for socio-economic development and environmental stewardship. 展开更多
关键词 BAMBOO SWOT Analysis PESTLE Analysis Business Environment Value Addition SUSTAINABILITY market Potential
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部