期刊文献+
共找到303,537篇文章
< 1 2 250 >
每页显示 20 50 100
Heating of nanoparticles and their environment by laser radiation and applications
1
作者 Victor K.Pustovalov 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第1期78-115,共38页
This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the ... This review considers the fundamental dynamic processes involved in the laser heating of metal nanoparticles and their subsequent cooling.Of particular interest are the absorption of laser energy by nanoparticles,the heating of a single nanoparticle or an ensemble thereof,and the dissipation of the energy of nanoparticles due to heat exchange with the environment.The goal is to consider the dependences and values of the temperatures of the nanoparticles and the environment,their time scales,and other parameters that describe these processes.Experimental results and analytical studies on the heating of single metal nanoparticles by laser pulses are discussed,including the laser thresholds for initiating subsequent photothermal processes,how temperature influences the optical properties,and the heating of gold nanoparticles by laser pulses.Experimental studies of the heating of an ensemble of nanoparticles and the results of an analytical study of the heating of an ensemble of nanoparticles and the environment by laser radiation are considered.Nanothermometry methods for nanoparticles under laser heating are considered,including changes in the refractive indices of metals and spectral thermometry of optical scattering of nanoparticles,Raman spectroscopy,the thermal distortion of the refractive index of an environment heated by a nanoparticle,and thermochemical phase transitions in lipid bilayers surrounding a heated nanoparticle.Understanding the sequence of events after radiation absorption and their time scales underlies many applications of nanoparticles.The applicationfields for the laser heating of nanoparticles are reviewed,including thermochemical reactions and selective nanophotothermolysis initiated in the environment by laser-heated nanoparticles,thermal radiation emission by nanoparticles and laser-induced incandescence,electron and ion emission of heated nanoparticles,and optothermal chemical catalysis.Applications of the laser heating of nanoparticles in laser nanomedicine are of particular interest.Significant emphasis is given to the proposed analytical approaches to modeling and calculating the heating processes under the action of a laser pulse on metal nanoparticles,taking into account the temperature dependences of the parameters.The proposed models can be used to estimate the parameters of lasers and nanoparticles in the various applicationfields for the laser heating of nanoparticles. 展开更多
关键词 NANOPARTICLES LASER HEATING MODELING Nanothermometry applications
下载PDF
A Review of Contact Electrification at Diversified Interfaces and Related Applications on Triboelectric Nanogenerator
2
作者 Jun Hu Mitsumasa Iwamoto Xiangyu Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期106-130,共25页
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables... The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG. 展开更多
关键词 Contact electrification INTERFACES Triboelectric nanogenerators Diversified applications
下载PDF
Potential industrial applications of photo/electrocatalysis: Recent progress and future challenges
3
作者 Jinhao Li Jing Ren +8 位作者 Shaoquan Li Guangchao Li Molly Meng-Jung Li Rengui Li Young Soo Kang Xiaoxin Zou Yong Luo Bin Liu Yufei Zhao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期859-876,共18页
Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis... Nowadays,the rapid development of the social economy inevitably leads to global energy and environmental crisis.For this reason,more and more scholars focus on the development of photocatalysis and/or electrocatalysis technology for the advantage in the sustainable production of high-value-added products,and the high efficiency in pollutants remediation.Although there is plenty of outstanding research has been put forward continuously,most of them focuses on catalysis performance and reaction mechanisms in laboratory conditions.Realizing industrial application of photo/electrocatalytic processes is still a challenge that needs to be overcome by social demand.In this regard,this review comprehensively summarized several explorations in thefield of photo/electrocatalytic reduction towards potential industrial applications in recent years.Special attention is paid to the successful attempts and the current status of photo/electrocatalytic water splitting,carbon dioxide conversion,resource utilization from waste,etc.,by using advanced reactors.The key problems and challenges of photo/electrocatalysis in future industrial practice are also discussed,and the possible development directions are also pointed out from the industry view. 展开更多
关键词 PHOTOCATALYSIS ELECTROCATALYSIS Industrial applications H2 economy
下载PDF
Renewable Polymers in Biomedical Applications:From the Bench to the Market
4
作者 Rauany Cristina Lopes Tamires Nossa +3 位作者 Wilton Rogério Lustri Gabriel Lombardo Maria Inés Errea Eliane Trovatti 《Journal of Renewable Materials》 EI CAS 2024年第4期643-666,共24页
Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contri... Polymers from renewable resources have been used for a long time in biomedical applications and found an irreplaceable role in some of them.Their uses have been increasing because of their attractive properties,contributing to the improvement of life quality,mainly in drug release systems and in regenerative medicine.Formulations using natural polymer,nano and microscale particles preparation,composites,blends and chemical modification strategies have been used to improve their properties for clinical application.Although many studies have been carried out with these natural polymers,the way to reach the market is long and only very few of them become commercially available.Vegetable cellulose,bacterial cellulose,chitosan,poly(lactic acid)and starch can be found among the most studied polymers for biological applications,some with several derivatives already established in the market,and others with potential for such.In this scenario this work aims to describe the properties and potential of these renewable polymers for biomedical applications,the routes from the bench to the market,and the perspectives for future developments. 展开更多
关键词 POLYMERS RENEWABLE biomedical applications MARKET
下载PDF
MXenes: Versatile 2D materials with tailored surface chemistry and diverse applications
5
作者 Sunil Kumar Nitu Kumari Yongho Seo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期253-293,I0008,共42页
MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical str... MXenes,the most recent addition to the 2D material family,have attracted significant attention owing to their distinctive characteristics,including high surface area,conductivity,surface characteristics,mechanical strength,etc.This review begins by presenting MXenes,providing insights into their structural characteristics,synthesis methods,and surface functional groups.The review covers a thorough analysis of MXene surface properties,including surface chemistry and termination group impacts.The properties of MXenes are influenced by their synthesis,which can be fluorine-based or fluorinedependent.Fluorine-based synthesis techniques involve etching with fluorine-based reagents,mainly including HF or LiF/HCl,while fluorine-free methods include electrochemical etching,chemical vapor deposition(CVD),alkaline etching,Lewis acid-based etching,etc.These techniques result in the emergence of functional groups such as-F,-O,-OH,-Cl,etc.on the MXenes surface,depending on the synthesis method used.Properties of MXenes,such as electrical conductivity,electronic properties,catalytic activity,magnetic properties,mechanical strength,and chemical and thermal stability,are examined,and the role of functional groups in determining these properties is explored.The review delves into the diverse applications of MXenes,encompassing supercapacitors,battery materials,hydrogen storage,fuel cells,electromagnetic interference(EMI) shielding,pollutant removal,water purification,flexible electronics,sensors,additive manufacturing,catalysis,biomedical and healthcare fields,etc.Finally,this article outlines the challenges and opportunities in the current and future development of MXenes research,addressing various aspects such as synthesis scalability,etching challenges,and multifunctionality,and exploring novel applications.The review concludes with future prospects and conclusions envisioning the impact of MXenes on future technologies and innovation. 展开更多
关键词 MXenes 2D materials Surface chemistry MXenes structure SYNTHESIS applications
下载PDF
MXene-Based Elastomer Mimetic StretchableSensors: Design, Properties, and Applications
6
作者 Poushali Das Parham Khoshbakht Marvi +5 位作者 Sayan Ganguly Xiaowu(Shirley)Tang Bo Wang Seshasai Srinivasan Amin Reza Rajabzadeh Andreas Rosenkranz 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期295-342,共48页
Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors... Flexible sensors based on MXene-polymer composites are highly prospective for next-generation wearable electronics used in human-machine interfaces.One of the motivating factors behind the progress of flexible sensors is the steady arrival of new conductive materials.MXenes,a new family of 2D nanomaterials,have been draw-ing attention since the last decade due to their high electronic conduc-tivity,processability,mechanical robustness and chemical tunability.In this review,we encompass the fabrication of MXene-based polymeric nanocomposites,their structure-property relationship,and applications in the flexible sensor domain.Moreover,our discussion is not only lim-ited to sensor design,their mechanism,and various modes of sensing platform,but also their future perspective and market throughout the world.With our article,we intend to fortify the bond between flexible matrices and MXenes thus promoting the swift advancement of flexible MXene-sensors for wearable technologies. 展开更多
关键词 Flexible sensor 2D nanomaterials MXene Wearable and conductive applications
下载PDF
Time Parameter Based Low-Energy Data Encryption Method for Mobile Applications
7
作者 Li-Woei Chen Kun-Lin Tsai +2 位作者 Fang-Yie Leu Wen-Cheng Jiang Shih-Ting Tseng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2779-2794,共16页
Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G... Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G mobile networks.High-security cryptography guarantees that essential data can be transmitted securely;however,it increases energy consumption and reduces data processing speed.Therefore,this study proposes a low-energy data encryption(LEDE)algorithm based on the Advanced Encryption Standard(AES)for improving data transmission security and reducing the energy consumption of encryption in Internet-of-Things(IoT)devices.In the proposed LEDE algorithm,the system time parameter is employed to create a dynamic S-Box to replace the static S-Box of AES.Tests indicated that six-round LEDE encryption achieves the same security level as 10-round conventional AES encryption.This reduction in encryption time results in the LEDE algorithm having a 67.4%lower energy consumption and 43.9%shorter encryption time than conventional AES;thus,the proposed LEDE algorithm can improve the performance and the energy consumption of IoT edge devices. 展开更多
关键词 Mobile application security AES data encryption time parameter mobile device
下载PDF
Review on analytical technologies and applications in metabolomics
8
作者 XIN MENG YAN LIU +2 位作者 SHUJUN XU LIANRONG YANG RUI YIN 《BIOCELL》 SCIE 2024年第1期65-78,共14页
Over the past decade,the swift advancement of metabolomics can be credited to significant progress in technologies such as mass spectrometry,nuclear magnetic resonance,and multivariate statistics.Currently,metabolomic... Over the past decade,the swift advancement of metabolomics can be credited to significant progress in technologies such as mass spectrometry,nuclear magnetic resonance,and multivariate statistics.Currently,metabolomics garners widespread application across diverse fields including drug research and development,early disease detection,toxicology,food and nutrition science,biology,prescription,and chinmedomics,among others.Metabolomics serves as an effective characterization technique,offering insights into physiological process alterations in vivo.These changes may result from various exogenous factors like environmental conditions,stress,medications,as well as endogenous elements including genetic and protein-based influences.The potential scientific outcomes gleaned from these insights have catalyzed the formulation of innovative methods,poised to further broaden the scope of this domain.Today,metabolomics has evolved into a valuable and widely accepted instrument in the life sciences.However,comprehensive reviews focusing on the sample preparation and analytical methodologies employed in metabolomics within the life sciences are surprisingly scant.This review aims to fill that gap,providing an overview of current trends and recent advancements in metabolomics.Particular emphasis is placed on sample preparation,sophisticated analytical techniques,and their applications in life science research. 展开更多
关键词 Metabolomics Sample preparation Analytical methods application of metabolomics
下载PDF
Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications
9
作者 Zhaosu Liu Si Yin Tee +1 位作者 Guijian Guan Ming‑Yong Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期248-284,共37页
Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behav... Transition metal dichalcogenides(TMDs)are a promising class of layered materials in the post-graphene era,with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior.Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties,providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs.The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable(opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts(0–100%).Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase,band alignment/structure,carrier density,and surface reactive activity,enabling novel and promising applications.This review comprehensively elaborates on atomically substitutional engineering in TMD layers,including theoretical foundations,synthetic strategies,tailored properties,and superior applications.The emerging type of ternary TMDs,Janus TMDs,is presented specifically to highlight their typical compounds,fabrication methods,and potential applications.Finally,opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field. 展开更多
关键词 Transition metal dichalcogenides Atomic substitution Tailored structure Tunable bandgap Enhanced applications
下载PDF
Device design principles and bioelectronic applications for flexible organic electrochemical transistors
10
作者 Lin Gao Mengge Wu +1 位作者 Xinge Yu Junsheng Yu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期126-153,共28页
Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. ... Organic electrochemical transistors(OECTs) exhibit significant potential for applications in healthcare and human-machine interfaces, due to their tunable synthesis, facile deposition, and excellent biocompatibility. Expanding OECTs to the fexible devices will significantly facilitate stable contact with the skin and enable more possible bioelectronic applications. In this work,we summarize the device physics of fexible OECTs, aiming to offer a foundational understanding and guidelines for material selection and device architecture. Particular attention is paid to the advanced manufacturing approaches, including photolithography and printing techniques, which establish a robust foundation for the commercialization and large-scale fabrication. And abundantly demonstrated examples ranging from biosensors, artificial synapses/neurons, to bioinspired nervous systems are summarized to highlight the considerable prospects of smart healthcare. In the end, the challenges and opportunities are proposed for fexible OECTs. The purpose of this review is not only to elaborate on the basic design principles of fexible OECTs, but also to act as a roadmap for further exploration of wearable OECTs in advanced bio-applications. 展开更多
关键词 flexible organic electrochemical transistors wearable bioelectronics manufacturing approaches device physics neuromorphic applications
下载PDF
Advances in clinical applications of bioceramics in the new regenerative medicine era
11
作者 Noha Elshazly Fayza Eid Nasr +2 位作者 Ayat Hamdy Safa Saied Mohamed Elshazly 《World Journal of Clinical Cases》 SCIE 2024年第11期1863-1869,共7页
In this editorial,we comment on the hard and soft tissue applications of different ceramic-based scaffolds prepared by different mechanisms such as 3D printing,sol-gel,and electrospinning.The new concept of regenerati... In this editorial,we comment on the hard and soft tissue applications of different ceramic-based scaffolds prepared by different mechanisms such as 3D printing,sol-gel,and electrospinning.The new concept of regenerative medicine relies on biomaterials that can trigger in situ tissue regeneration and stem cell recruitment at the defect site.A large percentage of these biomaterials is ceramic-based as they provide the essential requirements of biomaterial principles such as tailored multisize porosity,antibacterial properties,and angiogenic properties.All these previously mentioned properties put bioceramics on top of the hierarchy of biomaterials utilized to stimulate tissue regeneration in soft and hard tissue wounds.Multiple clinical applications registered the use of these materials in triggering soft tissue regeneration in healthy and diabetic patients such as bioactive glass nanofibers.The results were promising and opened new frontiers for utilizing these materials on a larger scale.The same results were mentioned when using different forms and formulas of bioceramics in hard defect regeneration.Some bioceramics were used in combination with other polymers and biological scaffolds to improve their regenerative and mechanical properties.All this progress will enable a larger scale of patients to receive such services with ease and decrease the financial burden on the government. 展开更多
关键词 Regenerative medicine BIOCERAMICS Chronic wounds Bone defects Clinical applications
下载PDF
Evaluations of Chris-Jerry Data Using Generalized Progressive Hybrid Strategy and Its Engineering Applications
12
作者 Refah Alotaibi Hoda Rezk Ahmed Elshahhat 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期3073-3103,共31页
A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively ... A new one-parameter Chris-Jerry distribution,created by mixing exponential and gamma distributions,is discussed in this article in the presence of incomplete lifetime data.We examine a novel generalized progressively hybrid censoring technique that ensures the experiment ends at a predefined period when the model of the test participants has a Chris-Jerry(CJ)distribution.When the indicated censored data is present,Bayes and likelihood estimations are used to explore the CJ parameter and reliability indices,including the hazard rate and reliability functions.We acquire the estimated asymptotic and credible confidence intervals of each unknown quantity.Additionally,via the squared-error loss,the Bayes’estimators are obtained using gamma prior.The Bayes estimators cannot be expressed theoretically since the likelihood density is created in a complex manner;nonetheless,Markov-chain Monte Carlo techniques can be used to evaluate them.The effectiveness of the investigated estimations is assessed,and some recommendations are given using Monte Carlo results.Ultimately,an analysis of two engineering applications,such as mechanical equipment and ball bearing data sets,shows the applicability of the proposed approaches that may be used in real-world settings. 展开更多
关键词 Chris-Jerry model generalized censoring likelihood and Bayes estimations MCMC algorithms engineering applications
下载PDF
Hydrogen sulfide responsive nanoplatforms: Novel gas responsive drug delivery carriers for biomedical applications
13
作者 Jiafeng Zou Zeting Yuan +9 位作者 Xiaojie Chen You Chen Min Yao Yang Chen Xiang Li Yi Chen Wenxing Ding Chuanhe Xia Yuzheng Zhao Feng Gao 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第1期1-17,共17页
Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focus... Hydrogen sulfide(H_(2)S)is a toxic,essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter.These studies have mainly focused on the production and pharmacological side effects caused by H_(2)S.Therefore,effective strategies to remove H_(2)S has become a key research topic.Furthermore,the development of novel nanoplatforms has provided new tools for the targeted removal of H_(2)S.This paper was performed to review the association between H_(2)S anddisease,relatedH_(2)S inhibitory drugs,aswell as H_(2)S responsive nanoplatforms(HRNs).This review first analyzed the role of H_(2)S in multiple tissues and conditions.Second,common drugs used to eliminate H_(2)S,as well as their potential for combination with anticancer agents,were summarized.Not only the existing studies on HRNs,but also the inhibition H_(2)S combined with different therapeutic methods were both sorted out in this review.Furthermore,this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail.Finally,potential challenges of HRNs were proposed.This study demonstrates the excellent potential of HRNs for biomedical applications. 展开更多
关键词 Hydrogen sulfide Disease mechanisms Removal of hydrogen sulfide Responsive nanoplatforms CHALLENGES Biomedical applications
下载PDF
Energy Storage Systems Technologies, Evolution and Applications
14
作者 Olushola Aina 《Energy and Power Engineering》 2024年第2期97-119,共23页
Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink... Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application. 展开更多
关键词 Energy Storage Systems Renewable Energy Sources Power Electronic Interface (PEI) applications of Energy Storages
下载PDF
Rice Husk at a Glance:From Agro-Industrial to Modern Applications
15
作者 Masoumeh KORDI Naser FARROKHI +1 位作者 Martin I.PECH-CANUL Asadollah AHMADIKHAH 《Rice science》 SCIE CSCD 2024年第1期14-32,共19页
Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 milli... Excessive waste production has led to the concept of a circular bioeconomy to deliver valuable by-products and improve environmental sustainability.The annual worldwide rice production accounts for more than 750 million tons of grain and 150 million tons of husk.Rice husk(RH)contains valuable biomaterials with extensive applications in various fields.The proportions of each component depend primarily on rice genotype,soil chemistry,and climatic conditions.RH and its derivatives,including ash,biochar,hydrochar,and activated carbon have been placed foreground of applications in agriculture and other industries.While the investigation on RH’s compositions,microstructures,and by-products has been done copiously,owing to its unique features,it is still an open-ended area with enormous scope for innovation,research,and technology.Here,we reviewed the latest applications of RH and its derivatives,including fuel and other energy resources,construction materials,pharmacy,medicine,and nanobiotechnology to keep this versatile biomaterial in the spotlight. 展开更多
关键词 circular bioeconomy rice husk activated carbon rice husk ash rice husk biochar rice husk hydrochar rice husk application
下载PDF
Magnesium research and applications: Past, present and future 被引量:2
16
作者 Jianyue Zhang Jiashi Miao +4 位作者 Nagasivamuni Balasubramani Dae Hyun Cho Thomas Avey Chia-Yu Chang Alan A.Luo 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期3867-3895,共29页
As the lightest structural metal and one of the most abundant metallic elements on earth, magnesium(Mg) has been used as an "industrial metal" for lightweighting in the transportation and electronics industr... As the lightest structural metal and one of the most abundant metallic elements on earth, magnesium(Mg) has been used as an "industrial metal" for lightweighting in the transportation and electronics industries, in addition to other traditional applications in aluminum alloying,steel desulfurization and protective anodes. In recent years, research has shown significant potential for Mg to become a "technology metal"in a variety of new applications from energy storage/battery to biomedical products. However, global Mg production has shown steady but moderate growth in the last three decades. Mg applications as an industry metal are still limited due to some sustainability concerns of primary Mg production, as well as a number of technical issues related to the structural and corrosion performance of commercial Mg alloys.New Mg applications as an industrial or technology metal face tremendous technical challenges, which have been reflected in the intensified global research efforts in the last twenty years. This paper will review some past and present applications, and discuss future opportunities and challenges for Mg research and applications for the global Mg community. 展开更多
关键词 Magnesium alloys Structural applications Lightweighting Biomedical applications Energy applications
下载PDF
Manufacturing of graphene based synaptic devices for optoelectronic applications 被引量:3
17
作者 Kui Zhou Ziqi Jia +8 位作者 Xin-Qi Ma Wenbiao Niu Yao Zhou Ning Huang Guanglong Ding Yan Yan Su-Ting Han Vellaisamy A L Roy Ye Zhou 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第4期150-177,共28页
Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottl... Neuromorphic computing systems can perform memory and computing tasks in parallel on artificial synaptic devices through simulating synaptic functions,which is promising for breaking the conventional von Neumann bottlenecks at hardware level.Artificial optoelectronic synapses enable the synergistic coupling between optical and electrical signals in synaptic modulation,which opens up an innovative path for effective neuromorphic systems.With the advantages of high mobility,optical transparency,ultrawideband tunability,and environmental stability,graphene has attracted tremendous interest for electronic and optoelectronic applications.Recent progress highlights the significance of implementing graphene into artificial synaptic devices.Herein,to better understand the potential of graphene-based synaptic devices,the fabrication technologies of graphene are first presented.Then,the roles of graphene in various synaptic devices are demonstrated.Furthermore,their typical optoelectronic applications in neuromorphic systems are reviewed.Finally,outlooks for development of synaptic devices based on graphene are proposed.This review will provide a comprehensive understanding of graphene fabrication technologies and graphene-based synaptic device for optoelectronic applications,also present an outlook for development of graphene-based synaptic device in future neuromorphic systems. 展开更多
关键词 GRAPHENE synaptic device MEMRISTOR optoelectronic applications
下载PDF
Recentadvancesincarbon‐basedmaterials for solar‐driven interfacial photothermal conversion water evaporation:Assemblies,structures,applications,and prospective 被引量:5
18
作者 Yanmin Li Yanying Shi +4 位作者 Haiwen Wang Tiefeng Liu Xiuwen Zheng Shanmin Gao Jun Lu 《Carbon Energy》 SCIE EI CAS CSCD 2023年第11期101-142,共42页
The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,la... The shortage of fresh water in the world has brought upon a serious crisis to human health and economic development.Solar‐driven interfacial photothermal conversion water evaporation including evaporating seawater,lake water,or river water has been recognized as an environmentally friendly process for obtaining clean water in a low‐cost way.However,water transport is restricted by itself by solar energy absorption capacity's limits,especially for finite evaporation rates and insufficient working life.Therefore,it is important to seek photothermal conversion materials that can efficiently absorb solar energy and reasonably design solar‐driven interfacial photothermal conversion water evaporation devices.This paper reviews the research progress of carbon‐based photothermal conversion materials and the mechanism for solar‐driven interfacial photothermal conversion water evaporation,as well as the summary of the design and development of the devices.Based on the research progress and achievements of photothermal conversion materials and devices in the fields of seawater desalination and photothermal electric energy generation in recent years,the challenges and opportunities faced by carbon‐based photothermal conversion materials and devices are discussed.The prospect of the practical application of solar‐driven interfacial photothermal conversion evaporation technology is foreseen,and theoretical guidance is provided for the further development of this technology. 展开更多
关键词 applications carbon‐based materials EVAPORATOR photothermal conversion water evaporation
下载PDF
A review on lightweight materials for defence applications:Present and future developments 被引量:2
19
作者 Suchart Siengchin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期1-17,共17页
The defence sector is now at an advanced level,catering to the global scenario,and countries also invest heavily in research and development.Countries around the world have spent a lot of money on research and develop... The defence sector is now at an advanced level,catering to the global scenario,and countries also invest heavily in research and development.Countries around the world have spent a lot of money on research and development over the years in order to stay ahead of their competitors.Lightweight materials are critical in defence applications because they allow components to be lighter without sacrificing strength.This review provides an overview of the research related to defence applications.The book provides comprehensive details on current trends in the application of lightweight materials in defence.This review also includes historical and current perspectives on defence technologies.It discusses uses of lightweight materials such as metal matrix composites,polymer composites,ceramic matrix composites,fiber composites in defence sectors Finally,the review paper also emphasizes future military applications of lightweight materials. 展开更多
关键词 Lightweight materials DEFENCE TECHNOLOGIES DEVELOPMENTS applications
下载PDF
Electrocatalytic CO_(2) reduction towards industrial applications 被引量:3
20
作者 Dezhi Xu Kangkang Li +4 位作者 Baohua Jia Wenping Sun Wei Zhang Xue Liu Tianyi Ma 《Carbon Energy》 SCIE CAS CSCD 2023年第1期154-180,共27页
Recently,research on the electrocatalytic CO_(2) reduction reaction(eCO_(2)RR)has attracted considerable attention due to its potential to resolve environmental problems caused by CO_(2) while utilizing clean energy a... Recently,research on the electrocatalytic CO_(2) reduction reaction(eCO_(2)RR)has attracted considerable attention due to its potential to resolve environmental problems caused by CO_(2) while utilizing clean energy and producing high‐value‐added products.Considerable theoretical research in the lab has demonstrated its feasibility and prospect.However,industrialization is mandatory to realize the economic and social value of eCO_(2)RR.For industrial application of eCO_(2)RR,more criteria have been proposed for eCO_(2)RR research,including high current density(above 200 mA cm^(−2)),high product selectivity(above 90%),and long‐term stability.To fulfill these criteria,the eCO_(2)RR system needs to be systematically designed and optimized.In this review,recent research on eCO_(2)RR for industrial applications is summarized.The review starts with focus on potential industrial catalysts in eCO_(2)RR.Next,potential industrial products are proposed in eCO_(2)RR.These products,including carbon monoxide,formic acid,ethylene,and ethanol,all have high market demand,and have shown high current density and product selectivity in theoretical research.Notably,the innovative components and strategy for industrializing the eCO_(2)RR system are also highlighted here,including flow cells,seawater electrolytes,solid electrolytes,and a two‐step method.Finally,some instructions and possible future avenues are presented for the prospects of future industrial application of eCO_(2)RR. 展开更多
关键词 carbon dioxide reduction carbon neutral ELECTROCATALYSIS industrial application
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部