We offer a new understanding of the scientific world and the contents of the basic question of philosophy,which is based on an analysis of the phenomenon of the specific information in the various components of the st...We offer a new understanding of the scientific world and the contents of the basic question of philosophy,which is based on an analysis of the phenomenon of the specific information in the various components of the structure of reality.It is shown that,in addition to material objects,processes,and events,in the real world are also intangible objects,processes and conditions that are in its information content.So the basic question of philosophy is proposed to treat the relationship as a tangible and intangible component of reality.More succinctly it can be formulated as the ratio of matter and information.This allows you to point to some new challenges studying the phenomenon of information in various components of the structure of reality.展开更多
The revolution of science and technology in the new era is rising.New industries,formats,and models led by information technology are emerging.Scientific research has entered the fourth data-intensive paradigm.As an i...The revolution of science and technology in the new era is rising.New industries,formats,and models led by information technology are emerging.Scientific research has entered the fourth data-intensive paradigm.As an important part of the science and technology innovation system,universities also have new requirements for their scientific research management system.In this article,it is suggested that the efficiency and quality of scientific research management in universities could be enhanced by reconstructing the organizational structure of scientific research management,improve the service capabilities of scientific research managers,perfecting the scientific research evaluation system,and innovating the management model of cross-research teams.展开更多
人工智能驱动的科学研究(AI for Science)被视为科学发现的第五范式的曙光。依循演绎主义的科学研究逻辑,梳理了人工智能在科学假设生成、数据收集以及分析挖掘中的应用。人工智能“数据算法算力”三原则,对科学数据的质量、算法的复杂...人工智能驱动的科学研究(AI for Science)被视为科学发现的第五范式的曙光。依循演绎主义的科学研究逻辑,梳理了人工智能在科学假设生成、数据收集以及分析挖掘中的应用。人工智能“数据算法算力”三原则,对科学数据的质量、算法的复杂性以及计算能力提出了更高的要求。AI for Science时代预计会出现科技巨头、AI专家、软硬件工程师、政府以及教育机构等紧密协同的新型科研模式。然而,AI算法的黑箱特性对科学研究的可解释性和可重复性构成潜在威胁。因此,在推进人工智能驱动的科学研究的发展过程中,必须坚持伦理优先的原则,注重科学数据的安全性管理,防范化解大模型分布外泛化带来的解释性弱等问题。展开更多
近年来,在算法、数据、算力三大引擎驱动下,人工智能(artificial intelligence,AI)发展迅速,并在AlphaFold3、核聚变智能控制、新冠药物设计等前沿领域取得诸多令人瞩目的成果。AI驱动的科学研究(AI for Science,AI4S)解决了科学数据分...近年来,在算法、数据、算力三大引擎驱动下,人工智能(artificial intelligence,AI)发展迅速,并在AlphaFold3、核聚变智能控制、新冠药物设计等前沿领域取得诸多令人瞩目的成果。AI驱动的科学研究(AI for Science,AI4S)解决了科学数据分析维度高、尺度跨度大以及局限性科研实验制约大规模跨学科科研活动的瓶颈问题,促进科学研究迈向以“平台协作”为主要特征的新模式。分析了AI4S的国际态势,梳理了当前我国农业数字化发展现状及现实困境,将文献、统计数据、调研案例分析相结合,提出推动AI4S赋能我国农业发展的实践路径。AI4S将成为撬动农业生产从“看天、看地、看庄稼”的传统模式向智能感知、智能决策、可视化管理等模式转变的强力引擎,推动科学研究从单打独斗的“小农作坊模式”迈向“安卓模式”的平台科研。在此平台上,科研人员共享算力、模型、算法、数据库和知识库等基础设施,围绕农业全产业链全生命周期研发应用,通过“滚雪球效应”加速科研创新和成果应用。利用AI技术赋能农业生产数字化、网络化和智能化,为支撑理论-实验的在线迭代,还需要完善高质量农业科学数据资源体系、适度超前推进AI关键技术与基础设施、优化新范式下的交叉创新科研生态、加强农业数据安全监管、制定完善的配套政策和激励机制等措施来打通数据壁垒,推动AI+农业落地,从源头强化农业科技创新,推动农业强国建设。展开更多
文摘We offer a new understanding of the scientific world and the contents of the basic question of philosophy,which is based on an analysis of the phenomenon of the specific information in the various components of the structure of reality.It is shown that,in addition to material objects,processes,and events,in the real world are also intangible objects,processes and conditions that are in its information content.So the basic question of philosophy is proposed to treat the relationship as a tangible and intangible component of reality.More succinctly it can be formulated as the ratio of matter and information.This allows you to point to some new challenges studying the phenomenon of information in various components of the structure of reality.
文摘The revolution of science and technology in the new era is rising.New industries,formats,and models led by information technology are emerging.Scientific research has entered the fourth data-intensive paradigm.As an important part of the science and technology innovation system,universities also have new requirements for their scientific research management system.In this article,it is suggested that the efficiency and quality of scientific research management in universities could be enhanced by reconstructing the organizational structure of scientific research management,improve the service capabilities of scientific research managers,perfecting the scientific research evaluation system,and innovating the management model of cross-research teams.
文摘人工智能驱动的科学研究(AI for Science)被视为科学发现的第五范式的曙光。依循演绎主义的科学研究逻辑,梳理了人工智能在科学假设生成、数据收集以及分析挖掘中的应用。人工智能“数据算法算力”三原则,对科学数据的质量、算法的复杂性以及计算能力提出了更高的要求。AI for Science时代预计会出现科技巨头、AI专家、软硬件工程师、政府以及教育机构等紧密协同的新型科研模式。然而,AI算法的黑箱特性对科学研究的可解释性和可重复性构成潜在威胁。因此,在推进人工智能驱动的科学研究的发展过程中,必须坚持伦理优先的原则,注重科学数据的安全性管理,防范化解大模型分布外泛化带来的解释性弱等问题。
文摘近年来,在算法、数据、算力三大引擎驱动下,人工智能(artificial intelligence,AI)发展迅速,并在AlphaFold3、核聚变智能控制、新冠药物设计等前沿领域取得诸多令人瞩目的成果。AI驱动的科学研究(AI for Science,AI4S)解决了科学数据分析维度高、尺度跨度大以及局限性科研实验制约大规模跨学科科研活动的瓶颈问题,促进科学研究迈向以“平台协作”为主要特征的新模式。分析了AI4S的国际态势,梳理了当前我国农业数字化发展现状及现实困境,将文献、统计数据、调研案例分析相结合,提出推动AI4S赋能我国农业发展的实践路径。AI4S将成为撬动农业生产从“看天、看地、看庄稼”的传统模式向智能感知、智能决策、可视化管理等模式转变的强力引擎,推动科学研究从单打独斗的“小农作坊模式”迈向“安卓模式”的平台科研。在此平台上,科研人员共享算力、模型、算法、数据库和知识库等基础设施,围绕农业全产业链全生命周期研发应用,通过“滚雪球效应”加速科研创新和成果应用。利用AI技术赋能农业生产数字化、网络化和智能化,为支撑理论-实验的在线迭代,还需要完善高质量农业科学数据资源体系、适度超前推进AI关键技术与基础设施、优化新范式下的交叉创新科研生态、加强农业数据安全监管、制定完善的配套政策和激励机制等措施来打通数据壁垒,推动AI+农业落地,从源头强化农业科技创新,推动农业强国建设。