Contact between mobile hosts and database servers presents many problems in theMobile Database System(MDS).It is harmed by a variety of causes,including handoff,inadequate capacity,frequent transaction updates,and rep...Contact between mobile hosts and database servers presents many problems in theMobile Database System(MDS).It is harmed by a variety of causes,including handoff,inadequate capacity,frequent transaction updates,and repeated failures,both of which contribute to serious issues with the information system’s consistency.However,error tolerance technicality allows devices to continue performing their functions in the event of a failure.The aim of this paper is to identify the optimal recovery approach from among the available state-of-the-art techniques in MDS by employing game theory.Several of the presented recovery protocols are chosen and evaluated in order to determine the most critical factors affecting the recovery mechanism,such as the number of processes,the time required to deliver messages,and the number of messages logged-in time.Then,using the suggested payout matrix,the game theory strategy is adapted to choose the optimum recovery technique for the specified environmental variables.The NS2 simulatorwas used to carry out the tests and apply the chosen recovery protocols.The experiments validate the proposed model’s usefulness in comparison to other methods.展开更多
A partition checkpoint strategy based on data segment priority is presented to meet the timing constraints of the data and the transaction in embedded real-time main memory database systems(ERTMMDBS) as well as to r...A partition checkpoint strategy based on data segment priority is presented to meet the timing constraints of the data and the transaction in embedded real-time main memory database systems(ERTMMDBS) as well as to reduce the number of the transactions missing their deadlines and the recovery time.The partition checkpoint strategy takes into account the characteristics of the data and the transactions associated with it;moreover,it partitions the database according to the data segment priority and sets the corresponding checkpoint frequency to each partition for independent checkpoint operation.The simulation results show that the partition checkpoint strategy decreases the ratio of trans-actions missing their deadlines.展开更多
文摘Contact between mobile hosts and database servers presents many problems in theMobile Database System(MDS).It is harmed by a variety of causes,including handoff,inadequate capacity,frequent transaction updates,and repeated failures,both of which contribute to serious issues with the information system’s consistency.However,error tolerance technicality allows devices to continue performing their functions in the event of a failure.The aim of this paper is to identify the optimal recovery approach from among the available state-of-the-art techniques in MDS by employing game theory.Several of the presented recovery protocols are chosen and evaluated in order to determine the most critical factors affecting the recovery mechanism,such as the number of processes,the time required to deliver messages,and the number of messages logged-in time.Then,using the suggested payout matrix,the game theory strategy is adapted to choose the optimum recovery technique for the specified environmental variables.The NS2 simulatorwas used to carry out the tests and apply the chosen recovery protocols.The experiments validate the proposed model’s usefulness in comparison to other methods.
基金Supported by the National Natural Science Foundation of China (60673128)
文摘A partition checkpoint strategy based on data segment priority is presented to meet the timing constraints of the data and the transaction in embedded real-time main memory database systems(ERTMMDBS) as well as to reduce the number of the transactions missing their deadlines and the recovery time.The partition checkpoint strategy takes into account the characteristics of the data and the transactions associated with it;moreover,it partitions the database according to the data segment priority and sets the corresponding checkpoint frequency to each partition for independent checkpoint operation.The simulation results show that the partition checkpoint strategy decreases the ratio of trans-actions missing their deadlines.