In this paper,the short-,medium-,and long-term effects of the COVID-19 pandemic on the Italian power system,particularly electricity consumption behavior and electricity market prices,are investigated by defining vari...In this paper,the short-,medium-,and long-term effects of the COVID-19 pandemic on the Italian power system,particularly electricity consumption behavior and electricity market prices,are investigated by defining various metrics.The investigation reveals that COVID-19 lockdown caused a drop in load consumption and,consequently,a decrement in day-ahead market prices and an increase in ancillary service prices.展开更多
In this paper,a day-ahead electricity market bidding problem with multiple strategic generation company(GEN-CO)bidders is studied.The problem is formulated as a Markov game model,where GENCO bidders interact with each...In this paper,a day-ahead electricity market bidding problem with multiple strategic generation company(GEN-CO)bidders is studied.The problem is formulated as a Markov game model,where GENCO bidders interact with each other to develop their optimal day-ahead bidding strategies.Considering unobservable information in the problem,a model-free and data-driven approach,known as multi-agent deep deterministic policy gradient(MADDPG),is applied for approximating the Nash equilibrium(NE)in the above Markov game.The MAD-DPG algorithm has the advantage of generalization due to the automatic feature extraction ability of the deep neural networks.The algorithm is tested on an IEEE 30-bus system with three competitive GENCO bidders in both an uncongested case and a congested case.Comparisons with a truthful bidding strategy and state-of-the-art deep reinforcement learning methods including deep Q network and deep deterministic policy gradient(DDPG)demonstrate that the applied MADDPG algorithm can find a superior bidding strategy for all the market participants with increased profit gains.In addition,the comparison with a conventional-model-based method shows that the MADDPG algorithm has higher computational efficiency,which is feasible for real-world applications.展开更多
This paper proposes the day-ahead electricity price forecasting using the artificial neural networks (ANN) and weighted least square (WLS) technique in the restructured electricity markets. Price forecasting is ve...This paper proposes the day-ahead electricity price forecasting using the artificial neural networks (ANN) and weighted least square (WLS) technique in the restructured electricity markets. Price forecasting is very important for online trading, e-commerce and power system operation. Forecasting the hourly locational marginal prices (LMP) in the electricity markets is a very important basis for the decision making in order to maximize the profits/benefits. The novel approach pro- posed in this paper for forecasting the electricity prices uses WLS technique and compares the results with the results obtained by using ANNs. To perform this price forecasting, the market knowledge is utilized to optimize the selection of input data for the electricity price forecasting tool. In this paper, price forecasting for Pennsylvania-New Jersey-Maryland (PJM) interconnec- tion is demonstrated using the ANNs and the proposed WLS technique. The data used for this price forecasting is obtained from the PJM website. The forecasting results obtained by both methods are compared, which shows the effectiveness of the proposed forecasting approach. From the simulation results, it can be observed that the accuracy of prediction has increased in both seasons using the proposed WLS technique. Another important advantage of the proposed WLS technique is that it is not an iterative method.展开更多
文摘In this paper,the short-,medium-,and long-term effects of the COVID-19 pandemic on the Italian power system,particularly electricity consumption behavior and electricity market prices,are investigated by defining various metrics.The investigation reveals that COVID-19 lockdown caused a drop in load consumption and,consequently,a decrement in day-ahead market prices and an increase in ancillary service prices.
基金This work was supported in part by the US Department of Energy(DOE),Office of Electricity and Office of Energy Efficiency and Renewable Energy under contract DE-AC05-00OR22725in part by CURENT,an Engineering Research Center funded by US National Science Foundation(NSF)and DOE under NSF award EEC-1041877in part by NSF award ECCS-1809458.
文摘In this paper,a day-ahead electricity market bidding problem with multiple strategic generation company(GEN-CO)bidders is studied.The problem is formulated as a Markov game model,where GENCO bidders interact with each other to develop their optimal day-ahead bidding strategies.Considering unobservable information in the problem,a model-free and data-driven approach,known as multi-agent deep deterministic policy gradient(MADDPG),is applied for approximating the Nash equilibrium(NE)in the above Markov game.The MAD-DPG algorithm has the advantage of generalization due to the automatic feature extraction ability of the deep neural networks.The algorithm is tested on an IEEE 30-bus system with three competitive GENCO bidders in both an uncongested case and a congested case.Comparisons with a truthful bidding strategy and state-of-the-art deep reinforcement learning methods including deep Q network and deep deterministic policy gradient(DDPG)demonstrate that the applied MADDPG algorithm can find a superior bidding strategy for all the market participants with increased profit gains.In addition,the comparison with a conventional-model-based method shows that the MADDPG algorithm has higher computational efficiency,which is feasible for real-world applications.
文摘This paper proposes the day-ahead electricity price forecasting using the artificial neural networks (ANN) and weighted least square (WLS) technique in the restructured electricity markets. Price forecasting is very important for online trading, e-commerce and power system operation. Forecasting the hourly locational marginal prices (LMP) in the electricity markets is a very important basis for the decision making in order to maximize the profits/benefits. The novel approach pro- posed in this paper for forecasting the electricity prices uses WLS technique and compares the results with the results obtained by using ANNs. To perform this price forecasting, the market knowledge is utilized to optimize the selection of input data for the electricity price forecasting tool. In this paper, price forecasting for Pennsylvania-New Jersey-Maryland (PJM) interconnec- tion is demonstrated using the ANNs and the proposed WLS technique. The data used for this price forecasting is obtained from the PJM website. The forecasting results obtained by both methods are compared, which shows the effectiveness of the proposed forecasting approach. From the simulation results, it can be observed that the accuracy of prediction has increased in both seasons using the proposed WLS technique. Another important advantage of the proposed WLS technique is that it is not an iterative method.