期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Impacts of COVID-19 Pandemic on Italian Electricity Demand and Markets
1
作者 Mahmood Hosseini Imani Ettore Bompard +1 位作者 Pietro Colella Tao Huang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第2期824-827,共4页
In this paper,the short-,medium-,and long-term effects of the COVID-19 pandemic on the Italian power system,particularly electricity consumption behavior and electricity market prices,are investigated by defining vari... In this paper,the short-,medium-,and long-term effects of the COVID-19 pandemic on the Italian power system,particularly electricity consumption behavior and electricity market prices,are investigated by defining various metrics.The investigation reveals that COVID-19 lockdown caused a drop in load consumption and,consequently,a decrement in day-ahead market prices and an increase in ancillary service prices. 展开更多
关键词 Ancillary service market price COVID-19 day-ahead market price Italian electricity markets load consumption
原文传递
Approximating Nash Equilibrium in Day-ahead Electricity Market Bidding with Multi-agent Deep Reinforcement Learning 被引量:8
2
作者 Yan Du Fangxing Li +1 位作者 Helia Zandi Yaosuo Xue 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第3期534-544,共11页
In this paper,a day-ahead electricity market bidding problem with multiple strategic generation company(GEN-CO)bidders is studied.The problem is formulated as a Markov game model,where GENCO bidders interact with each... In this paper,a day-ahead electricity market bidding problem with multiple strategic generation company(GEN-CO)bidders is studied.The problem is formulated as a Markov game model,where GENCO bidders interact with each other to develop their optimal day-ahead bidding strategies.Considering unobservable information in the problem,a model-free and data-driven approach,known as multi-agent deep deterministic policy gradient(MADDPG),is applied for approximating the Nash equilibrium(NE)in the above Markov game.The MAD-DPG algorithm has the advantage of generalization due to the automatic feature extraction ability of the deep neural networks.The algorithm is tested on an IEEE 30-bus system with three competitive GENCO bidders in both an uncongested case and a congested case.Comparisons with a truthful bidding strategy and state-of-the-art deep reinforcement learning methods including deep Q network and deep deterministic policy gradient(DDPG)demonstrate that the applied MADDPG algorithm can find a superior bidding strategy for all the market participants with increased profit gains.In addition,the comparison with a conventional-model-based method shows that the MADDPG algorithm has higher computational efficiency,which is feasible for real-world applications. 展开更多
关键词 Bidding strategy day-ahead electricity market deep reinforcement learning Markov game multi-agent deterministic policy gradient(MADDPG) Nash equilibrium(NE)
原文传递
Day-ahead electricity price forecasting using back propagation neural networks and weighted least square technique 被引量:1
3
作者 S. Surender REDDY Chan-Mook JUNG Ko Jun SEOG 《Frontiers in Energy》 SCIE CSCD 2016年第1期105-113,共9页
This paper proposes the day-ahead electricity price forecasting using the artificial neural networks (ANN) and weighted least square (WLS) technique in the restructured electricity markets. Price forecasting is ve... This paper proposes the day-ahead electricity price forecasting using the artificial neural networks (ANN) and weighted least square (WLS) technique in the restructured electricity markets. Price forecasting is very important for online trading, e-commerce and power system operation. Forecasting the hourly locational marginal prices (LMP) in the electricity markets is a very important basis for the decision making in order to maximize the profits/benefits. The novel approach pro- posed in this paper for forecasting the electricity prices uses WLS technique and compares the results with the results obtained by using ANNs. To perform this price forecasting, the market knowledge is utilized to optimize the selection of input data for the electricity price forecasting tool. In this paper, price forecasting for Pennsylvania-New Jersey-Maryland (PJM) interconnec- tion is demonstrated using the ANNs and the proposed WLS technique. The data used for this price forecasting is obtained from the PJM website. The forecasting results obtained by both methods are compared, which shows the effectiveness of the proposed forecasting approach. From the simulation results, it can be observed that the accuracy of prediction has increased in both seasons using the proposed WLS technique. Another important advantage of the proposed WLS technique is that it is not an iterative method. 展开更多
关键词 day-ahead electricity markets price forecast-ing load forecasting artificial neural networks load servingentities
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部