This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power sys...This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.展开更多
Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainti...Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.展开更多
This paper presents an efficient analytical approach using Composite Cost Function (CCF) for solving the Economic Dispatch problem with Multiple Fuel Options (EDMFO). The solution methodology comprises two stages. Fir...This paper presents an efficient analytical approach using Composite Cost Function (CCF) for solving the Economic Dispatch problem with Multiple Fuel Options (EDMFO). The solution methodology comprises two stages. Firstly, the CCF of the plant is developed and the most economical fuel of each set can be easily identified for any load demand. In the next stage, for the selected fuels, CCF is evaluated and the optimal scheduling is obtained. The Proposed Method (PM) has been tested on the standard ten-generation set system;each set consists of two or three fuel options. The total fuel cost obtained by the PM is compared with earlier reports in order to validate its effectiveness. The comparison clears that this approach is a promising alterna-tive for solving EDMFO problems in practical power system.展开更多
以新能源为主体的微电网系统存在前期资本投入大、电网刚性不足等问题,特别是离网型微电网由于失去大电网的支撑,安全稳定运行面临更大的挑战。本文针对离网型交流微电网设计了双层调度策略,即经济最优化日前调度和日内稳定运行实时调度...以新能源为主体的微电网系统存在前期资本投入大、电网刚性不足等问题,特别是离网型微电网由于失去大电网的支撑,安全稳定运行面临更大的挑战。本文针对离网型交流微电网设计了双层调度策略,即经济最优化日前调度和日内稳定运行实时调度,在多时间尺度下灵活规划发电主体出力。首先,日前调度以微电网经济性运行为目标,利用全生命周期理论建立经济模型,计及储能电池荷电状态(state of charge,SOC)对寿命的影响;其次,日内实时调度以供电稳定性为目标,充分考虑预测误差给系统带来的可能性崩溃,利用储能PQ源实时修正VF源的功率偏差,改善储能VF源的健康状态;最后,通过算例仿真,得到满足微电网经济、稳定运行的综合优化调度方案,并验证了该策略的有效性和合理性。展开更多
Multi-energy microgrids,such as integrated electricity-heat-gas microgrids(IEHS-MG),have been widely recognized as one of the most convenient ways to connect wind power(WP).However,the inherent intermittency and uncer...Multi-energy microgrids,such as integrated electricity-heat-gas microgrids(IEHS-MG),have been widely recognized as one of the most convenient ways to connect wind power(WP).However,the inherent intermittency and uncertainty of WP still render serious power curtailment in the operation.To this end,this paper presents an IEHS-MG model equipped with power-to-gas technology,thermal storage,electricity storage,and an electrical boiler for improving WP utilization efficiency.Moreover,a two-stage distributionally robust economic dispatch model is constructed for the IEHSMG,with the objective of minimizing total operational costs.The first stage determines the day-ahead decisions including on/off state and set-point decisions.The second stage adjusts the day-ahead decision according to real-time WP realization.Furthermore,WP uncertainty is characterized through an Imprecise Dirichlet model(IDM)based ambiguity set.Finally,Column-and-Constraints Generation method is utilized to solve the model,which provides a day-ahead economic dispatch strategy that immunizes against the worst-case WP distributions.Case studies demonstrate the presented IEHS-MG model outperforms traditional IEHS-MG model in terms of WP utilization and dispatch economics,and that distributionally robust optimization can handle uncertainty effectively.展开更多
To deal with uncertainties of renewable energy,demand and price signals in real-time microgrid operation,this paper proposes a model predictive control strategy for microgrid economic dispatch, where hourly schedule i...To deal with uncertainties of renewable energy,demand and price signals in real-time microgrid operation,this paper proposes a model predictive control strategy for microgrid economic dispatch, where hourly schedule is constantly optimized according to the current system state and latest forecast information. Moreover, implicit network topology of the microgrid and corresponding power flow constraints are considered, which leads to a mixed integer nonlinear optimal power flow problem. Given the non-convexity feature of the original problem, the technique of conic programming is applied to efficiently crack the nut. Simulation results from a reconstructed IEEE-33 bus system and comparisons with the routine day-ahead microgrid schedule sufficiently substantiate the effectiveness of the proposed MPC strategy and the conic programming method.展开更多
虚假数据注入(false data injection,FDI)攻击是对电力系统运行影响较为严重的一种攻击。目前已有对交直流混联电网的FDI攻击方法的研究,但仍缺乏对交直流混联电网攻击策略的优化研究。为此,文中提出了面向交直流混联电网的FDI攻击策略...虚假数据注入(false data injection,FDI)攻击是对电力系统运行影响较为严重的一种攻击。目前已有对交直流混联电网的FDI攻击方法的研究,但仍缺乏对交直流混联电网攻击策略的优化研究。为此,文中提出了面向交直流混联电网的FDI攻击策略优化方法。首先,建立以FDI攻击损失最大为目标的双层优化模型,上层模型以电力系统经济损失最大为目标对FDI攻击策略进行优化;下层模型以发电机出力调整量和切负荷量最小为目标计算FDI攻击下的最大经济损失,考虑交直流混联电网安全约束和换相失败风险。然后,采用遗传算法对优化模型进行求解,生成最优攻击策略。最后,以改进的IEEE 14节点系统为例验证了模型的有效性。仿真结果表明,优化后的攻击策略能够显著提高安全约束经济调度(security constrained economic dispatch,SCED)的运行成本。展开更多
Given the different energy rates of multiple types of power generation units,different operation plans affect the economy of microgrids.Limited by load and power generation forecasting technologies,the economic superi...Given the different energy rates of multiple types of power generation units,different operation plans affect the economy of microgrids.Limited by load and power generation forecasting technologies,the economic superiority of day-ahead plans is unable to be fully utilized because of the fluctuation of loads and power sources.In this regard,a two-stage correction strategy-based real-time dispatch method for the economic operation of microgrids is proposed.Based on the optimal day-ahead economic operation plan,unbalanced power is validly allocated in two stages in terms of power increment and current power,which maintains the economy of the day-ahead plan.Further,for operating point offset during real-time correction,a rolling dispatch method is introduced to dynamically update the system operation plan.Finally,the results verify the effectiveness of the proposed method.展开更多
基金supported by the National Natural Science Foundation of China(Grant 62103101)the Natural Science Foundation of Jiangsu Province of China(Grant BK20210217)+5 种基金the China Postdoctoral Science Foundation(Grant 2022M710680)the National Natural Science Foundation of China(Grant 62273094)the"Zhishan"Scholars Programs of Southeast Universitythe Fundamental Science(Natural Science)General Program of Jiangsu Higher Education Institutions(No.21KJB470020)the Open Research Fund of Jiangsu Collaborative Innovation Center for Smart Distribution Network,Nanjing Institute of Technology(No.XTCX202102)the Introduced Talents Scientific Research Start-up Fund Project,Nanjing Institute of Technology(No.YKJ202133).
文摘This paper presents a finite-time economic model predictive control(MPC)algorithm that can be used for frequency regulation and optimal load dispatch in multi-area power systems.Economic MPC can be used in a power system to ensure frequency stability,real-time economic optimization,control of the system and optimal load dispatch from it.A generalized terminal penalty term was used,and the finite-time convergence of the system was guaranteed.The effectiveness of the proposed model predictive control algorithm was verified by simulating a power system,which had two areas connected by an AC tie line.The simulation results demonstrated the effectiveness of the algorithm.
基金supported by the National Key Research and Development Project of China(2018YFE0122200).
文摘Effective source-load prediction and reasonable dispatching are crucial to realize the economic and reliable operations of integrated energy systems(IESs).They can overcome the challenges introduced by the uncertainties of new energies and various types of loads in the IES.Accordingly,a robust optimal dispatching method for the IES based on a robust economic model predictive control(REMPC)strategy considering source-load power interval prediction is proposed.First,an operation model of the IES is established,and an interval prediction model based on the bidirectional long short-term memory network optimized by beetle antenna search and bootstrap is formulated and applied to predict the photovoltaic power and the cooling,heating,and electrical loads.Then,an optimal dispatching scheme based on REMPC is devised for the IES.The source-load interval prediction results are used to improve the robustness of the REPMC and reduce the influence of source-load uncertainties on dispatching.An actual IES case is selected to conduct simulations;the results show that compared with other prediction techniques,the proposed method has higher prediction interval coverage probability and prediction interval normalized averaged width.Moreover,the operational cost of the IES is decreased by the REMPC strategy.With the devised dispatching scheme,the ability of the IES to handle the dispatching risk caused by prediction errors is enhanced.Improved dispatching robustness and operational economy are also achieved.
文摘This paper presents an efficient analytical approach using Composite Cost Function (CCF) for solving the Economic Dispatch problem with Multiple Fuel Options (EDMFO). The solution methodology comprises two stages. Firstly, the CCF of the plant is developed and the most economical fuel of each set can be easily identified for any load demand. In the next stage, for the selected fuels, CCF is evaluated and the optimal scheduling is obtained. The Proposed Method (PM) has been tested on the standard ten-generation set system;each set consists of two or three fuel options. The total fuel cost obtained by the PM is compared with earlier reports in order to validate its effectiveness. The comparison clears that this approach is a promising alterna-tive for solving EDMFO problems in practical power system.
文摘以新能源为主体的微电网系统存在前期资本投入大、电网刚性不足等问题,特别是离网型微电网由于失去大电网的支撑,安全稳定运行面临更大的挑战。本文针对离网型交流微电网设计了双层调度策略,即经济最优化日前调度和日内稳定运行实时调度,在多时间尺度下灵活规划发电主体出力。首先,日前调度以微电网经济性运行为目标,利用全生命周期理论建立经济模型,计及储能电池荷电状态(state of charge,SOC)对寿命的影响;其次,日内实时调度以供电稳定性为目标,充分考虑预测误差给系统带来的可能性崩溃,利用储能PQ源实时修正VF源的功率偏差,改善储能VF源的健康状态;最后,通过算例仿真,得到满足微电网经济、稳定运行的综合优化调度方案,并验证了该策略的有效性和合理性。
文摘Multi-energy microgrids,such as integrated electricity-heat-gas microgrids(IEHS-MG),have been widely recognized as one of the most convenient ways to connect wind power(WP).However,the inherent intermittency and uncertainty of WP still render serious power curtailment in the operation.To this end,this paper presents an IEHS-MG model equipped with power-to-gas technology,thermal storage,electricity storage,and an electrical boiler for improving WP utilization efficiency.Moreover,a two-stage distributionally robust economic dispatch model is constructed for the IEHSMG,with the objective of minimizing total operational costs.The first stage determines the day-ahead decisions including on/off state and set-point decisions.The second stage adjusts the day-ahead decision according to real-time WP realization.Furthermore,WP uncertainty is characterized through an Imprecise Dirichlet model(IDM)based ambiguity set.Finally,Column-and-Constraints Generation method is utilized to solve the model,which provides a day-ahead economic dispatch strategy that immunizes against the worst-case WP distributions.Case studies demonstrate the presented IEHS-MG model outperforms traditional IEHS-MG model in terms of WP utilization and dispatch economics,and that distributionally robust optimization can handle uncertainty effectively.
基金supported by the National Natural Science Foundation of China(No.51277170)the National Key Basic Research Program of China(No.2012CB215204)
文摘To deal with uncertainties of renewable energy,demand and price signals in real-time microgrid operation,this paper proposes a model predictive control strategy for microgrid economic dispatch, where hourly schedule is constantly optimized according to the current system state and latest forecast information. Moreover, implicit network topology of the microgrid and corresponding power flow constraints are considered, which leads to a mixed integer nonlinear optimal power flow problem. Given the non-convexity feature of the original problem, the technique of conic programming is applied to efficiently crack the nut. Simulation results from a reconstructed IEEE-33 bus system and comparisons with the routine day-ahead microgrid schedule sufficiently substantiate the effectiveness of the proposed MPC strategy and the conic programming method.
文摘Given the different energy rates of multiple types of power generation units,different operation plans affect the economy of microgrids.Limited by load and power generation forecasting technologies,the economic superiority of day-ahead plans is unable to be fully utilized because of the fluctuation of loads and power sources.In this regard,a two-stage correction strategy-based real-time dispatch method for the economic operation of microgrids is proposed.Based on the optimal day-ahead economic operation plan,unbalanced power is validly allocated in two stages in terms of power increment and current power,which maintains the economy of the day-ahead plan.Further,for operating point offset during real-time correction,a rolling dispatch method is introduced to dynamically update the system operation plan.Finally,the results verify the effectiveness of the proposed method.