To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power...To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power output distribution and fluctuation characteristics at different time scales, and finally proposes a two level coordinated control strategy based on electric heat storage and pumped storage. The optimization target of the first level coordinated control is the lowest operation cost and the largest wind power utilization rate. Based on prediction of thermoelectric load and wind power, the operation economy of the system and wind power accommodation level are improved with the cooperation of electric heat storage and pumped storage in regulation capacity. The second level coordinated control stabilizes wind power real time fluctuations by cooperating electric heat storage and pumped storage in control speed. The example results of actual wind farms in Jiuquan, Gansu verifies the feasibility and effectiveness of the proposed coordinated control strategy.展开更多
With the increase of wind power capacity in China, the situation of curtailment of wind power is getting worse. An annual sequence production simulation model is established with maximum wind power consumption as the ...With the increase of wind power capacity in China, the situation of curtailment of wind power is getting worse. An annual sequence production simulation model is established with maximum wind power consumption as the objective function. The calculation of specific power grid operation in 2013 verifies the precision of this model. The impact of different factors on wind power accommodation as well as the impact of power grid reserve, wind resources and load on wind power curtailment is analyzed. The calculation results quantify the impact of different factors from power system to the accommodation of wind power and provide reference to solving the problem of wind power curtailment.展开更多
Due to the high inherent uncertainty of renewable energy,probabilistic day-ahead wind power forecasting is crucial for modeling and controlling the uncertainty of renewable energy smart grids in smart cities.However,t...Due to the high inherent uncertainty of renewable energy,probabilistic day-ahead wind power forecasting is crucial for modeling and controlling the uncertainty of renewable energy smart grids in smart cities.However,the accuracy and reliability of high-resolution day-ahead wind power forecasting are constrained by unreliable local weather prediction and incomplete power generation data.This article proposes a physics-informed artificial intelligence(AI)surrogates method to augment the incomplete dataset and quantify its uncertainty to improve wind power forecasting performance.The incomplete dataset,built with numerical weather prediction data,historical wind power generation,and weather factors data,is augmented based on generative adversarial networks.After augmentation,the enriched data is then fed into a multiple AI surrogates model constructed by two extreme learning machine networks to train the forecasting model for wind power.Therefore,the forecasting models’accuracy and generalization ability are improved by mining the implicit physics information from the incomplete dataset.An incomplete dataset gathered from a wind farm in North China,containing only 15 days of weather and wind power generation data withmissing points caused by occasional shutdowns,is utilized to verify the proposed method’s performance.Compared with other probabilistic forecastingmethods,the proposed method shows better accuracy and probabilistic performance on the same incomplete dataset,which highlights its potential for more flexible and sensitive maintenance of smart grids in smart cities.展开更多
Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considerin...Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considering the executive priority of different power components to establish a multi-objective coordination unit commitment model. Through an example to verify the effectiveness of the model in promoting wind power consumption, guaranteeing trade execution, and improving power generation efficiency, and analyzed the interactions to each other among the factors of wind power, trading and blocking. According to the results, when wind power causes reverse power flow in the congestion line, it will promote the implementation of contracts, the influence of wind power accommodation to trade execution should be analyzed combined with the grid block, the results can provide reference for wind power planning.展开更多
This article explores and establishes comprehensive evaluation index system of wind power accommodation ability considering microscopic index and macroscopic index, and the index system includes conventional evaluatio...This article explores and establishes comprehensive evaluation index system of wind power accommodation ability considering microscopic index and macroscopic index, and the index system includes conventional evaluation indexes such as forecast deviation, simultaneity factor and anti-peak rate, also newly introduced evaluation indexes such as installed capacity, power adequacy and accommodation space. Bayesian weight modified method is used for solving index weights of 8 wind power accommodation indexes. The paper puts forward a comprehensive evaluation model of wind power accommodation ability based on improved radar chart method, and this model changes traditional radar chart fan-shaped sector to quadrilateral evaluation region, and increasing angle bisector can solve the problem that evaluation results are not unique. It constructs new area and perimeter vectors of radar chart, which make the evaluation results give consideration to level of aggregation and balance degree of evaluation objectives, and case study results show that this model has a certain practical value.展开更多
The large-scale utilization and sharing of renewable energy in interconnected systems is crucial for realizing"instrumented,interconnected,and intelligent"power grids.The traditional optimal dispatch method ...The large-scale utilization and sharing of renewable energy in interconnected systems is crucial for realizing"instrumented,interconnected,and intelligent"power grids.The traditional optimal dispatch method can not coordinate the economic benefits of all the stakeholders from multiple regions of the transmission network,comprehensively.Hence,this study proposes a large-scale wind-power coordinated consumption strategy based on the Nash-Q method and establishes an economic dispatch model for interconnected systems considering the uncertainty of wind power,with optimal windpower consumption as the objective for redistributing the shared benefits between regions.Initially,based on the equivalent cost of the interests of stakeholders from different regions,the state decision models are respectively constructed,and the noncooperative game Nash equilibrium model is established.The Q-learning algorithm is then introduced for high-dimension decision variables in the game model,and the dispatch solution methods for interconnected systems are presented,integrating the noncooperative game Nash equilibrium and Q-learning algorithm.Finally,the proposed method is verified through the modified IEEE 39-bus interconnection system,and it is established that this method achieves reasonable distribution of interests between regions and promotes large-scale consumption of wind power.展开更多
在风-火-核-碳捕集多源联合系统中,核电机组在参与电网调峰时存在调峰深度选择不精确的问题。此外,该多源联合系统还存在风电消纳不足的问题。为此,构建了一种计及线性化核电机组调峰深度模型的电转气(power to gas,P2G)-风-火-核-碳捕...在风-火-核-碳捕集多源联合系统中,核电机组在参与电网调峰时存在调峰深度选择不精确的问题。此外,该多源联合系统还存在风电消纳不足的问题。为此,构建了一种计及线性化核电机组调峰深度模型的电转气(power to gas,P2G)-风-火-核-碳捕集多源联合系统,并对该系统进行了日前优化调度。首先,基于核电机组负荷跟踪模式,通过引入连续变量,提高了调峰深度选择的准确性;然后,分析了碳捕集电厂-P2G联合运行模式及需求响应资源对促进风电消纳的积极作用;最后,以系统综合运行成本最低为目标函数,同时考虑碳交易机制,在Matlab平台搭建仿真模型,验证了所构建多源联合系统的有效性。结果表明,相较于核电机组采用固定调峰档位的多源联合系统,所构建的多源联合系统能够在保证核电机组安全稳定运行的同时,实现风电完全消纳,系统碳排放量与综合运行成本分别下降了13.74%与6.27%,提高了系统运行的低碳性与经济性。展开更多
The integration of large-scale wind power brings challenges to the operation of integrated energy systems(IES).In this paper,a day-ahead scheduling model for IES with wind power and multi-type energy storage is propos...The integration of large-scale wind power brings challenges to the operation of integrated energy systems(IES).In this paper,a day-ahead scheduling model for IES with wind power and multi-type energy storage is proposed in a scenario-based stochastic programming framework.The structure of the IES consists of electricity,natural gas,and heating networks which are all included in the model.Operational constraints for IES incorporating multi-type energy storage devices are also considered.The constraints of the electricity network,natural gas network and heating network are formulated,and non-linear constraints are linearized.The calculation method for the correlation of wind speed between wind farms based on historical data is proposed.Uncertainties of correlated wind power were represented by creating multiple representative scenarios with different probabilities,and this was done using the Latin hyper-cube sampling(LHS)method.The stochastic scheduling model is formulated as a mixed integer linear programming(MILP)problem with the objective function of minimizing the total expected operation cost.Numerical results on a modified PJM 5-bus electricity system with a seven-node natural gas system and a six-node heating system validate the proposed model.The results demonstrate that multi-type energy storage devices can help reduce wind power curtailments and improve the operational flexibility of IES.展开更多
基金National Natural Science Foundation of China(No.61663019)
文摘To solve the severe problem of wind power curtailment in the winter heating period caused by "power determined by heat" operation constraint of cogeneration units, this paper analyzes thermoelectric load, wind power output distribution and fluctuation characteristics at different time scales, and finally proposes a two level coordinated control strategy based on electric heat storage and pumped storage. The optimization target of the first level coordinated control is the lowest operation cost and the largest wind power utilization rate. Based on prediction of thermoelectric load and wind power, the operation economy of the system and wind power accommodation level are improved with the cooperation of electric heat storage and pumped storage in regulation capacity. The second level coordinated control stabilizes wind power real time fluctuations by cooperating electric heat storage and pumped storage in control speed. The example results of actual wind farms in Jiuquan, Gansu verifies the feasibility and effectiveness of the proposed coordinated control strategy.
文摘With the increase of wind power capacity in China, the situation of curtailment of wind power is getting worse. An annual sequence production simulation model is established with maximum wind power consumption as the objective function. The calculation of specific power grid operation in 2013 verifies the precision of this model. The impact of different factors on wind power accommodation as well as the impact of power grid reserve, wind resources and load on wind power curtailment is analyzed. The calculation results quantify the impact of different factors from power system to the accommodation of wind power and provide reference to solving the problem of wind power curtailment.
基金funded by the National Natural Science Foundation of China under Grant 62273022.
文摘Due to the high inherent uncertainty of renewable energy,probabilistic day-ahead wind power forecasting is crucial for modeling and controlling the uncertainty of renewable energy smart grids in smart cities.However,the accuracy and reliability of high-resolution day-ahead wind power forecasting are constrained by unreliable local weather prediction and incomplete power generation data.This article proposes a physics-informed artificial intelligence(AI)surrogates method to augment the incomplete dataset and quantify its uncertainty to improve wind power forecasting performance.The incomplete dataset,built with numerical weather prediction data,historical wind power generation,and weather factors data,is augmented based on generative adversarial networks.After augmentation,the enriched data is then fed into a multiple AI surrogates model constructed by two extreme learning machine networks to train the forecasting model for wind power.Therefore,the forecasting models’accuracy and generalization ability are improved by mining the implicit physics information from the incomplete dataset.An incomplete dataset gathered from a wind farm in North China,containing only 15 days of weather and wind power generation data withmissing points caused by occasional shutdowns,is utilized to verify the proposed method’s performance.Compared with other probabilistic forecastingmethods,the proposed method shows better accuracy and probabilistic performance on the same incomplete dataset,which highlights its potential for more flexible and sensitive maintenance of smart grids in smart cities.
文摘Bilateral electric power contract is settled based on contract output curve. This paper considered the bilateral transactions execution, new energy accommodation, power grid security and generation economy, considering the executive priority of different power components to establish a multi-objective coordination unit commitment model. Through an example to verify the effectiveness of the model in promoting wind power consumption, guaranteeing trade execution, and improving power generation efficiency, and analyzed the interactions to each other among the factors of wind power, trading and blocking. According to the results, when wind power causes reverse power flow in the congestion line, it will promote the implementation of contracts, the influence of wind power accommodation to trade execution should be analyzed combined with the grid block, the results can provide reference for wind power planning.
基金supported by project of the National Key Research and Development Program Foundation of China(2016YFB0900100).
文摘This article explores and establishes comprehensive evaluation index system of wind power accommodation ability considering microscopic index and macroscopic index, and the index system includes conventional evaluation indexes such as forecast deviation, simultaneity factor and anti-peak rate, also newly introduced evaluation indexes such as installed capacity, power adequacy and accommodation space. Bayesian weight modified method is used for solving index weights of 8 wind power accommodation indexes. The paper puts forward a comprehensive evaluation model of wind power accommodation ability based on improved radar chart method, and this model changes traditional radar chart fan-shaped sector to quadrilateral evaluation region, and increasing angle bisector can solve the problem that evaluation results are not unique. It constructs new area and perimeter vectors of radar chart, which make the evaluation results give consideration to level of aggregation and balance degree of evaluation objectives, and case study results show that this model has a certain practical value.
基金supported by the Fundamental Research Funds For the Central Universities(No.2017MS093)
文摘The large-scale utilization and sharing of renewable energy in interconnected systems is crucial for realizing"instrumented,interconnected,and intelligent"power grids.The traditional optimal dispatch method can not coordinate the economic benefits of all the stakeholders from multiple regions of the transmission network,comprehensively.Hence,this study proposes a large-scale wind-power coordinated consumption strategy based on the Nash-Q method and establishes an economic dispatch model for interconnected systems considering the uncertainty of wind power,with optimal windpower consumption as the objective for redistributing the shared benefits between regions.Initially,based on the equivalent cost of the interests of stakeholders from different regions,the state decision models are respectively constructed,and the noncooperative game Nash equilibrium model is established.The Q-learning algorithm is then introduced for high-dimension decision variables in the game model,and the dispatch solution methods for interconnected systems are presented,integrating the noncooperative game Nash equilibrium and Q-learning algorithm.Finally,the proposed method is verified through the modified IEEE 39-bus interconnection system,and it is established that this method achieves reasonable distribution of interests between regions and promotes large-scale consumption of wind power.
文摘在风-火-核-碳捕集多源联合系统中,核电机组在参与电网调峰时存在调峰深度选择不精确的问题。此外,该多源联合系统还存在风电消纳不足的问题。为此,构建了一种计及线性化核电机组调峰深度模型的电转气(power to gas,P2G)-风-火-核-碳捕集多源联合系统,并对该系统进行了日前优化调度。首先,基于核电机组负荷跟踪模式,通过引入连续变量,提高了调峰深度选择的准确性;然后,分析了碳捕集电厂-P2G联合运行模式及需求响应资源对促进风电消纳的积极作用;最后,以系统综合运行成本最低为目标函数,同时考虑碳交易机制,在Matlab平台搭建仿真模型,验证了所构建多源联合系统的有效性。结果表明,相较于核电机组采用固定调峰档位的多源联合系统,所构建的多源联合系统能够在保证核电机组安全稳定运行的同时,实现风电完全消纳,系统碳排放量与综合运行成本分别下降了13.74%与6.27%,提高了系统运行的低碳性与经济性。
基金This paper was supported in part by National Natural Science Foundation of China(Grant No.51677022,51607033,and 51607034)National Key Research and Development Program of China(2017YFB0903400)+1 种基金Integrated Energy System Innovation Team of Jilin Province(20180519015JH)and International Clean Energy Talent Programme(iCET)of China Scholarship Council.
文摘The integration of large-scale wind power brings challenges to the operation of integrated energy systems(IES).In this paper,a day-ahead scheduling model for IES with wind power and multi-type energy storage is proposed in a scenario-based stochastic programming framework.The structure of the IES consists of electricity,natural gas,and heating networks which are all included in the model.Operational constraints for IES incorporating multi-type energy storage devices are also considered.The constraints of the electricity network,natural gas network and heating network are formulated,and non-linear constraints are linearized.The calculation method for the correlation of wind speed between wind farms based on historical data is proposed.Uncertainties of correlated wind power were represented by creating multiple representative scenarios with different probabilities,and this was done using the Latin hyper-cube sampling(LHS)method.The stochastic scheduling model is formulated as a mixed integer linear programming(MILP)problem with the objective function of minimizing the total expected operation cost.Numerical results on a modified PJM 5-bus electricity system with a seven-node natural gas system and a six-node heating system validate the proposed model.The results demonstrate that multi-type energy storage devices can help reduce wind power curtailments and improve the operational flexibility of IES.