A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations...A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations of dust particles are coupled.The electrical interaction between charged dust particles is considered in the model.The time evolution of radial distributions of dust density,plasma density,the radial component of electric field and the forces acting on dust particles when dust density tends to be stable,are obtained and analyzed under different discharge currents and dust particle radii.It is shown that the dust density structure is determined mainly by the radial electrostatic force,thermophoretic force and ion drag force in the discharge tube,and both discharge current and dust particle radius have an obvious effect on the transport processes of dust particles.The dust particles gather in the central region of the discharge tube for low discharge current and small dust radius,then dust voids are formed and become wider when the discharge current and dust radius increase.The plasma parameters in the dust gathering region are obviously affected by the dust particles due to the charging processes of electrons and ions to the dust surface.展开更多
The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of ...The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE'film surfaces, which was confirmed by T-peel and lap-shear tests.展开更多
In order to form an atmospheric-pressure plasma jet without airflow, a needle–ring electrode structure is proposed in this paper. When heteropolar potentials are applied to a needle and a ring, a marked electric fiel...In order to form an atmospheric-pressure plasma jet without airflow, a needle–ring electrode structure is proposed in this paper. When heteropolar potentials are applied to a needle and a ring, a marked electric field strength enhancement around the needle’s pointed end has been found. When the same potential is applied to both the needle and the ring, the lateral electric field strength for the needle can be weakened. By using the above two methods, an increase of the difference between the pointed end electric field strength and the lateral one is achieved and stable plasma jets are formed. A symmetrical space electric field distribution is established at the pointed end of the needles when several sets of heteropolar needle–ring electrodes are uniformly arranged, which is conducive to forming a uniform array plasma jet. Under DC discharge conditions, a safe and stable plasma jet of high density and an array plasma jet are successfully achieved.展开更多
The reduction of TiO2 to Ti2O3 with hydrogen cold plasma generated by a DC pulsed glow discharge was realized under 2500Pa at 1233K. Only a little of Ti<sup>10 O<sup>19 and Ti9O<sup>17 was de...The reduction of TiO2 to Ti2O3 with hydrogen cold plasma generated by a DC pulsed glow discharge was realized under 2500Pa at 1233K. Only a little of Ti<sup>10 O<sup>19 and Ti9O<sup>17 was detected for using molecular hydrogen. Enhancement effects of hydrogen cold plasma on the reduction were discussed in terms of thermodynamic coupling, kinetics and plasma sheath. The exited hydrogen species are considered more effective reducing agents. It is instructive to reduce refractory oxides with plasma hydrogen at the reduced temperature.展开更多
The (DC-GDPAU) is a DC glow discharge plasma experiment that was designed, established, and operated in the Physics Department at Ain Shams University (Egypt). The aim of this experiment is to study and improve some p...The (DC-GDPAU) is a DC glow discharge plasma experiment that was designed, established, and operated in the Physics Department at Ain Shams University (Egypt). The aim of this experiment is to study and improve some properties of a printed circuit board (PCB) by exposing it to the plasma. The device consists of cylindrical discharge chamber with movable parallel circular copper electrodes (cathode and anode) fixed inside it. The distance between them is 12 cm. This plasma experiment works in a low-pressure range (0.15 - 0.70 Torr) for Ar gas with a maximum DC power supply of 200 W. The Paschen curves and electrical plasma parameters (current, volt, power, resistance) characterized to the plasma have been measured and calculated at each cm between the two electrodes. Besides, the electron temperature and ion density are obtained at different radial distances using a double Langmuir probe. The electron temperature (<em>KT<sub>e</sub></em>) was kept stable in range 6.58 to 10.44 eV;whereas the ion density (<em>ni</em>) was in range from 0.91 × 10<sup>10</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup> to 1.79 × 10<sup>10</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup>. A digital optical microscope (800×) was employed to draw a comparison between the pre-and after effect of exposure to plasma on the shaping of the circuit layout. The experimental results show that the electrical conductivity increased after plasma exposure, also an improvement in the adhesion force in the Cu foil surface. A significant increase in the conductivity can be directly related to the position of the sample surfaces as well as to the time of exposure. This shows the importance of the obtained results in developing the PCBs manufacturing that uses in different microelectronics devices like those onboard of space vehicles.展开更多
Surfaces of optical elements are deposited by antireflection coatings (ARCs) to decrease the reflection of light. Surface needs treatment before depositing the ARC one of treatment processes by plasma for adhesion imp...Surfaces of optical elements are deposited by antireflection coatings (ARCs) to decrease the reflection of light. Surface needs treatment before depositing the ARC one of treatment processes by plasma for adhesion improvement and surface hardening. A comparison of RF and DC glow discharges treated CR-39 polymer films gives insight into the mechanism of these surface processes. The surface properties of the plasma-treated samples are examined by microscopy techniques include contact angle measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), infrared (IR) spectroscopy and refractive index measurements. Results show that the plasma treatment modifies the polymer surface in both composition and morphology. It is found that the surface wettability is enhanced after plasma treatment. It is found that, RF plasma is more effective than DC plasma in CR-39 surface modification, as it implants more oxygen atoms into the surface and makes the contact angle declining to a lower level.展开更多
Direct exposure of samples to the active species of air generated by a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been used to etch and to increase the surface energy of metallic surfaces, photoresist, ...Direct exposure of samples to the active species of air generated by a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been used to etch and to increase the surface energy of metallic surfaces, photoresist, polymer films, and nonwoven fab- rics. The OAUGDP is a non-thermal plasma with the classical characteristics of a DC normal glow discharge that operates in air (and other gases) at atmospheric pres- sure. Neither a vacuum system nor batch processing is necessary. A wide range of applications to metals, photoresist, films, fabrics, and polymeric webs can be accom- modated by direct exposure of the workpiece to the plasma in parallel-plate reactors. This technolopy is simple, it produces effects that can be obtained in no other way at one atmosphere; it generates minimal pollutants or unwanted by-products; and it is suitable for individual sample or online treatment of metallic surfaces, wafers, films, and fabrics. Early exposures of solid materials to the OAUGDP required minutes to produce rela- tively small increases of surface energy. These durations appeared too long for com- mercial application to fast-moving webs. Recent improvements in OAUGDP gas com- position, power density, plasma quality, recireulating gas flow, and impedance match- ing of the power supply to the parallel plate plasma reactor have made it possible to raise the surface energy of a variety of polymeric webs (PP, PET PE etc.) to levels of 60 to 70 dynes/cm with one second of exposure. In air plasmas, the high surface ener- gies are not durable, and fall to 50 dynes/cm after periods of weeks to months. Here, we report the exposure of metallic surfaces, photoresist, polymeric films, and nonwo- ven fabrics made of PP and PET to an impedance matched parallel plate OAUGDP for durations ranging from one second to several tens of seconds. Data will be re- ported on the surface energy, wettability, wickability, and aging effect of polymeric films and fabrics as functions of time of exposure, and time after exposure; the rate and uniformity of photoresist etching; and the production of sub-micron structures by OAUGDP etching at one atmosphere.展开更多
The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined ...The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined by high performance liquid chromatography (HPLC). Various influencing factors such as the initial pH, the concentration of 4-CP and the catalytic action of Fe^2+ were examined. The results indicate that 4-CP is eventually degraded into inorganic ion, dioxide carbon and water. The attack of hydroxyl radicals on the benzene rings of 4-CP in the initial stage of oxidative reactions is presumed to be a key step. They also suggest that the reaction is of a pseudo-first order kinetic reaction and the proposed method is an efficient way for the 4-CP degradation,展开更多
This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen d...This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen demand (COD), ultraviolet (UV), FTIR absorption spectra, and atomic force microscopy (AFM) were used to monitor the degradation process. The results showed that the efficiency of degradation is raised by increasing the applied voltage, and is further improved when two or three anodes are used. Moreover, the use of Fe^2+ ion can promote the degradation reaction and shorten the degradation time. So the multi-electrode instrument is more efficient in degrading the dye and should be further studied.展开更多
Acoustic signals contain rich discharge information.In this study,the acoustic signal characteristics of transient glow,spark,and glow discharges generated through DC pin–pin discharge were investigated.The signals w...Acoustic signals contain rich discharge information.In this study,the acoustic signal characteristics of transient glow,spark,and glow discharges generated through DC pin–pin discharge were investigated.The signals were analyzed in the time,frequency,and time–frequency domains,and the correlation between the electric and the acoustic signal was studied statistically.The results show that glow discharge does not produce measurable sound signals.For the other modes,with a decrease in the discharge gap,the amplitude of the acoustic signal increases sharply with mode transformation,the short-time average energy becomes higher,and the frequency components are more abundant.Meanwhile,the current pulse and sound pressure pulse have a one-to-one relationship in the transient glow and spark regimes,and they are positively correlated in amplitude.A brief theoretical analysis of the mechanism of plasma sound and the trends of signals in different modes is presented.Essentially,the change in the discharge energy is closely related to the sound generation of the plasma.展开更多
This paper describes a novel method for the degradation of eosin by using glow discharge electrolysis (GDE). The effects of various parameters on the removal efficiency were studied. It was found that the eosin degr...This paper describes a novel method for the degradation of eosin by using glow discharge electrolysis (GDE). The effects of various parameters on the removal efficiency were studied. It was found that the eosin degradation could be raised considerably by increasing the applied voltage and the initial concentration, or by decreasing pH of the aqueous solution. Fe^2+ ion had an evident accelerating effect on the eosin degradation. The degradation process of eosin obeyed a pseudo-first-order reaction. The relationship between the degradation rate constant k and the reaction temperature T could be expressed by Arrhenius equation with which the apparent activation energy Ea of 14.110 kJ· mol^-1 and the pre-exponential factor k0 of 2.065× 10^-1 min^-1 were obtained, too. The determination of hydroxyl radical was carried out by using N, N-dimethyl -p-nitrosoaniline (RNO) as a scavenger. The results showed that the hydroxyl radical plays an important role in the degradation process.展开更多
Chemical effects in different aqueous solutions induced by plasma with glow discharge electrolysis (GDE) and contact glow discharge electrolysis (CGDE) are described in this paper. The experimental and discharge char...Chemical effects in different aqueous solutions induced by plasma with glow discharge electrolysis (GDE) and contact glow discharge electrolysis (CGDE) are described in this paper. The experimental and discharge characteristics are also reviewed. These are followed by a discussion of their mechanisms of both anodic and cathodic CGDE..展开更多
The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on ...The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on plasma characteristics diagnosis. The composition and ion energy distributions of a multi-carbon (CaHs/H2) plasma mixture at different working pressures were diagnosed by an energy-resolved mass spectrometer (MS) during the GDP film deposition process. The Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (SEM) and white-fight interferometer (WLI) results were obtained to investigate the structure, morphology and roughness characterization of the deposited films, respectively. It was found that the degree of ionization of the C4H8/H2 plasma reduces with an increase in the working pressure. At a low working pressure, the C-H fragments exhibited small-mass and high ion energy in plasma. In this case, the film had a low CH3/CH2 ratio, and displayed a smooth surface without any holes, cracks or asperities. While the working pressure increased to 15 Pa, the largest number of large-mass fragments led to the deposition rate reaching a maximum of 2.11 #m h-1, and to hole defects on the film surface. However, continuing to increase the working pressure, the film surface became smooth again, and the interface between clusters became inconspicuous without etching pits.展开更多
This paper discusses a study in which Ti surface alloying has been performed on copper substrates by means of a double glow discharge plasma surface alloying technique. The micro-structure, the phase structure, the mi...This paper discusses a study in which Ti surface alloying has been performed on copper substrates by means of a double glow discharge plasma surface alloying technique. The micro-structure, the phase structure, the micro-hardness and the distribution of Ti concentration of alloying layer were investigated in detail by XRD, SEM and so on. The effect of process parameters on the alloying layer was studied. The experimental results show that a Ti solid solution with the precipitation Cu4Ti alloying layer has been formed on the copper surface. The thickness of the alloying layer is about 120 μm and the surface titanium concentration gradually decreases from ω (Ti) = 87% to ω (Ti) = 4%. The micro-hardness of the alloying layer is between 300 HV-800 HV. Source sputtering, surface absorption, ion bombarding and high temperature diffusion are the major factors that affect the alloying layer.展开更多
Measurements of the plasma parameters of coaxial gridded hollow electrode alternating current(AC)discharge helium plasma were carried out using an improved probe diagnostic technology.The measurements were performed u...Measurements of the plasma parameters of coaxial gridded hollow electrode alternating current(AC)discharge helium plasma were carried out using an improved probe diagnostic technology.The measurements were performed under well-defined discharge conditions(chamber geometry,input power,AC power frequency,and external electrical characteristics).The problems encountered in describing the characteristics of AC discharge in many probe diagnostic methods were addressed by using an improved probe diagnostics design.This design can also be applied to the measurement of plasma parameters in many kinds of plasma sources in which the probe potential fluctuates with the discharge current.Several parameters of the hollow electrode AC helium discharge plasma were measured,including the plasma density,electron temperature,plasma density profiles,and changes in plasma density at different input power values and helium pressures.The characteristics of the coaxial gridded hollow electrode plasma determined by the experiments are suitable for comparison with plasma simulations,and for use in many applications of hollow cathode plasma.展开更多
CO2 adsorption on the surface of hydrotalcite-derived mixed oxide catalysts was investigated under low pressure glow discharge plasma in opercindo conditions via FT-IR spectroscopy.Nickel catalysts were promoted with ...CO2 adsorption on the surface of hydrotalcite-derived mixed oxide catalysts was investigated under low pressure glow discharge plasma in opercindo conditions via FT-IR spectroscopy.Nickel catalysts were promoted with various transition metal species(Ce,Fe,La,Zr)to influence their physico-chemical properties.Fe and Zr species were successfully incorporated into hydrotalcite brucite layers.After calcination formed a single phase with Ni(Mg,A1)O mixed oxide,while La and Ce species formed separate phases.This had a consequence in the distribution of surface basic sites as well as in the affinity to CO produced upon CO2 dissociation in plasma.Plasma treatment activated the surface of prepared materials and changed their properties via the generation of strong basic sites associated with low coordinated surface oxygen anions.Moreover,the CO2 adsorption capacity of prepared materials increased after plasma treatment.展开更多
Atmospheric pressure glow discharge(APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge...Atmospheric pressure glow discharge(APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge(DBD) in non-uniform electric field are studied. It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress. Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field, the development of electron avalanches in airgap is suppressed effectively and a large space of APGD plasma in air is generated. Further,through combining electrode structures, a large area of APGD plasma in air is generated. On the other hand, by using the method of increasing the density of initial electrons, millimeter-gap glow discharge in atmospheric pressure air is formed, and a maximum gap distance between electrodes is 8 mm. By using the APGD plasma surface treatment device composed of contact electrodes, the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained. The present paper provides references for the researchers of industrial applications of plasma.展开更多
Alkali metal DC arc discharge has the characteristics of easy ionization,low power consumption,high plasma temperature and ionization degree,etc,which can be applied in aerospace vehicles in various ways.In this paper...Alkali metal DC arc discharge has the characteristics of easy ionization,low power consumption,high plasma temperature and ionization degree,etc,which can be applied in aerospace vehicles in various ways.In this paper,we calculate the physical property parameters of lithium vapor,one of the major alkali metals,and analyze the discharge characteristics of lithium plasma with the magnetohydrodynamic(MHD)model.The discharge effects between constant current and voltage sources are also compared.It is shown that the lithium plasma of DC arc discharge has relatively high temperature and current density.The peak temperature can reach tens of thousands of K,and the current density reaches 6 x 107 A m 2.Under the same rated power,the plasma parameters of the constant voltage source discharge are much higher than those of the constant current source discharge,which can be used as the preferred discharge mode for aerospace applications.展开更多
In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) ...In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) and acrylic acid (AA), in which N,N'-methylenebisacrylamide (MBA) was used as a crosslinker. A mechanism for the synthesis of P(AM-co-AA) hydrogel was proposed. To optimize the synthesis condition, the following parameters were examined in detail: the discharge voltage, discharge time, the content of the crosslinker, and the mass ratio of AM to AA. The results showed that the optimum pH range for cationic dyes removal was found to be 5.0-10.0. The P(AM-co-AA) hydrogel exhibits a very high adsorption potential and the ex- perimental adsorption capacities for Crystal violet (CV) and Methylene blue (MB) were 2974.3 mg/g and 2303.6 mg/g, respectively. The adsorption process follows a pseudo-second-order kinetic model. In addition, the adsorption mechanism of P(AM-co-AA) hydrogel for cationic dyes was also discussed.展开更多
Titanium(Ti)nitrides were in situ grown on Ti6Al4V alloy(TA)using a glow discharge plasma nitriding(GDPN).The morphology,chemical composition,phase and mechanical property of the obtained nitrided TA were analyzed usi...Titanium(Ti)nitrides were in situ grown on Ti6Al4V alloy(TA)using a glow discharge plasma nitriding(GDPN).The morphology,chemical composition,phase and mechanical property of the obtained nitrided TA were analyzed using a scanning electron microscope(SEM),energy dispersive spectroscope(EDS),X-ray diffraction(XRD),and nanoindentation tester,respectively.The tribological performances of un-nitrided and nitrided TAs were evaluated using a ball-on-plate wear tester,and the wear mechanism was also discussed in detail.The results show that the nitrided layer with the compound and diffusion layers is formed on the nitrided TA,which is composed of δ-TiN and a-Ti phases.The nanohardness and elastic modulus of nitrided TA are 6.05 and 143.13 GPa,respectively,higher than those of un-nitrided TA.The friction reduction and anti-wear performances of nitrided TA are better than those of un-nitrided TA,and the wear mechanism is primary abrasive wear,accompanying with adhesive wear,which is attributed to the formation of Ti nitrides with the high nanohardness and elastic modulus.展开更多
基金supported by the Stable-Support Scientific Project of China Research Institute of Radiowave Propagation(No.132101W07)National Natural Science Foundation of China(No.12105251)National Key Laboratory Foundation Electromagnetic Environment(Nos.A382101001,A382101002 and A152101731-C02).
文摘A self-consistent fluid model is developed to investigate the radial distributions of dusty plasma parameters in a DC glow discharge,in which the extended fluid approach of plasma particles and the transport equations of dust particles are coupled.The electrical interaction between charged dust particles is considered in the model.The time evolution of radial distributions of dust density,plasma density,the radial component of electric field and the forces acting on dust particles when dust density tends to be stable,are obtained and analyzed under different discharge currents and dust particle radii.It is shown that the dust density structure is determined mainly by the radial electrostatic force,thermophoretic force and ion drag force in the discharge tube,and both discharge current and dust particle radius have an obvious effect on the transport processes of dust particles.The dust particles gather in the central region of the discharge tube for low discharge current and small dust radius,then dust voids are formed and become wider when the discharge current and dust radius increase.The plasma parameters in the dust gathering region are obviously affected by the dust particles due to the charging processes of electrons and ions to the dust surface.
文摘The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE'film surfaces, which was confirmed by T-peel and lap-shear tests.
基金supported by National Natural Science Foundation of China (No. 51577011)
文摘In order to form an atmospheric-pressure plasma jet without airflow, a needle–ring electrode structure is proposed in this paper. When heteropolar potentials are applied to a needle and a ring, a marked electric field strength enhancement around the needle’s pointed end has been found. When the same potential is applied to both the needle and the ring, the lateral electric field strength for the needle can be weakened. By using the above two methods, an increase of the difference between the pointed end electric field strength and the lateral one is achieved and stable plasma jets are formed. A symmetrical space electric field distribution is established at the pointed end of the needles when several sets of heteropolar needle–ring electrodes are uniformly arranged, which is conducive to forming a uniform array plasma jet. Under DC discharge conditions, a safe and stable plasma jet of high density and an array plasma jet are successfully achieved.
文摘The reduction of TiO2 to Ti2O3 with hydrogen cold plasma generated by a DC pulsed glow discharge was realized under 2500Pa at 1233K. Only a little of Ti<sup>10 O<sup>19 and Ti9O<sup>17 was detected for using molecular hydrogen. Enhancement effects of hydrogen cold plasma on the reduction were discussed in terms of thermodynamic coupling, kinetics and plasma sheath. The exited hydrogen species are considered more effective reducing agents. It is instructive to reduce refractory oxides with plasma hydrogen at the reduced temperature.
文摘The (DC-GDPAU) is a DC glow discharge plasma experiment that was designed, established, and operated in the Physics Department at Ain Shams University (Egypt). The aim of this experiment is to study and improve some properties of a printed circuit board (PCB) by exposing it to the plasma. The device consists of cylindrical discharge chamber with movable parallel circular copper electrodes (cathode and anode) fixed inside it. The distance between them is 12 cm. This plasma experiment works in a low-pressure range (0.15 - 0.70 Torr) for Ar gas with a maximum DC power supply of 200 W. The Paschen curves and electrical plasma parameters (current, volt, power, resistance) characterized to the plasma have been measured and calculated at each cm between the two electrodes. Besides, the electron temperature and ion density are obtained at different radial distances using a double Langmuir probe. The electron temperature (<em>KT<sub>e</sub></em>) was kept stable in range 6.58 to 10.44 eV;whereas the ion density (<em>ni</em>) was in range from 0.91 × 10<sup>10</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup> to 1.79 × 10<sup>10</sup> cm<sup><span style="white-space:nowrap;">−</span>3</sup>. A digital optical microscope (800×) was employed to draw a comparison between the pre-and after effect of exposure to plasma on the shaping of the circuit layout. The experimental results show that the electrical conductivity increased after plasma exposure, also an improvement in the adhesion force in the Cu foil surface. A significant increase in the conductivity can be directly related to the position of the sample surfaces as well as to the time of exposure. This shows the importance of the obtained results in developing the PCBs manufacturing that uses in different microelectronics devices like those onboard of space vehicles.
文摘Surfaces of optical elements are deposited by antireflection coatings (ARCs) to decrease the reflection of light. Surface needs treatment before depositing the ARC one of treatment processes by plasma for adhesion improvement and surface hardening. A comparison of RF and DC glow discharges treated CR-39 polymer films gives insight into the mechanism of these surface processes. The surface properties of the plasma-treated samples are examined by microscopy techniques include contact angle measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), infrared (IR) spectroscopy and refractive index measurements. Results show that the plasma treatment modifies the polymer surface in both composition and morphology. It is found that the surface wettability is enhanced after plasma treatment. It is found that, RF plasma is more effective than DC plasma in CR-39 surface modification, as it implants more oxygen atoms into the surface and makes the contact angle declining to a lower level.
文摘Direct exposure of samples to the active species of air generated by a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been used to etch and to increase the surface energy of metallic surfaces, photoresist, polymer films, and nonwoven fab- rics. The OAUGDP is a non-thermal plasma with the classical characteristics of a DC normal glow discharge that operates in air (and other gases) at atmospheric pres- sure. Neither a vacuum system nor batch processing is necessary. A wide range of applications to metals, photoresist, films, fabrics, and polymeric webs can be accom- modated by direct exposure of the workpiece to the plasma in parallel-plate reactors. This technolopy is simple, it produces effects that can be obtained in no other way at one atmosphere; it generates minimal pollutants or unwanted by-products; and it is suitable for individual sample or online treatment of metallic surfaces, wafers, films, and fabrics. Early exposures of solid materials to the OAUGDP required minutes to produce rela- tively small increases of surface energy. These durations appeared too long for com- mercial application to fast-moving webs. Recent improvements in OAUGDP gas com- position, power density, plasma quality, recireulating gas flow, and impedance match- ing of the power supply to the parallel plate plasma reactor have made it possible to raise the surface energy of a variety of polymeric webs (PP, PET PE etc.) to levels of 60 to 70 dynes/cm with one second of exposure. In air plasmas, the high surface ener- gies are not durable, and fall to 50 dynes/cm after periods of weeks to months. Here, we report the exposure of metallic surfaces, photoresist, polymeric films, and nonwo- ven fabrics made of PP and PET to an impedance matched parallel plate OAUGDP for durations ranging from one second to several tens of seconds. Data will be re- ported on the surface energy, wettability, wickability, and aging effect of polymeric films and fabrics as functions of time of exposure, and time after exposure; the rate and uniformity of photoresist etching; and the production of sub-micron structures by OAUGDP etching at one atmosphere.
基金The project partially supported by the Project of Key Science and Technology of Education Ministry (00250), the Natural ScienceFoundation of Gansu Province (3ZS041-A25-028), and the Project of KJCXGC-01, NWNU, China
文摘The oxidative degradation of 4-chlorophenol (4-CP) in aqueous solution induced by plasma with submersed glow discharge has been investigated. The concentration of 4-CP and the reaction intermediates were determined by high performance liquid chromatography (HPLC). Various influencing factors such as the initial pH, the concentration of 4-CP and the catalytic action of Fe^2+ were examined. The results indicate that 4-CP is eventually degraded into inorganic ion, dioxide carbon and water. The attack of hydroxyl radicals on the benzene rings of 4-CP in the initial stage of oxidative reactions is presumed to be a key step. They also suggest that the reaction is of a pseudo-first order kinetic reaction and the proposed method is an efficient way for the 4-CP degradation,
基金supported the by Project of Key Science and Technology of Education Ministry (20050)the Natural Science Foundation of Gansu Province (3ZS041-A25-028)the Invention Project of Science & Technology (KJCXGC-01, NWNU), China
文摘This paper presents a novel set-up to be used in the degradation of dye, Various influencing factors, such as the voltage, the number of the anodes, and the catalytic action of Fe^2+, were examined. Chemical oxygen demand (COD), ultraviolet (UV), FTIR absorption spectra, and atomic force microscopy (AFM) were used to monitor the degradation process. The results showed that the efficiency of degradation is raised by increasing the applied voltage, and is further improved when two or three anodes are used. Moreover, the use of Fe^2+ ion can promote the degradation reaction and shorten the degradation time. So the multi-electrode instrument is more efficient in degrading the dye and should be further studied.
基金supported by National Natural Science Foundation of China(No.52177145)。
文摘Acoustic signals contain rich discharge information.In this study,the acoustic signal characteristics of transient glow,spark,and glow discharges generated through DC pin–pin discharge were investigated.The signals were analyzed in the time,frequency,and time–frequency domains,and the correlation between the electric and the acoustic signal was studied statistically.The results show that glow discharge does not produce measurable sound signals.For the other modes,with a decrease in the discharge gap,the amplitude of the acoustic signal increases sharply with mode transformation,the short-time average energy becomes higher,and the frequency components are more abundant.Meanwhile,the current pulse and sound pressure pulse have a one-to-one relationship in the transient glow and spark regimes,and they are positively correlated in amplitude.A brief theoretical analysis of the mechanism of plasma sound and the trends of signals in different modes is presented.Essentially,the change in the discharge energy is closely related to the sound generation of the plasma.
基金the Key Projects of Science and Technology of Education Ministry(00250)the Natural Science Foundation of Gansu Province(3ZS041-A25-028)+1 种基金the Projects of KJCXGC-01,NWNUCansu Key Lab of Polymer Materials,China
文摘This paper describes a novel method for the degradation of eosin by using glow discharge electrolysis (GDE). The effects of various parameters on the removal efficiency were studied. It was found that the eosin degradation could be raised considerably by increasing the applied voltage and the initial concentration, or by decreasing pH of the aqueous solution. Fe^2+ ion had an evident accelerating effect on the eosin degradation. The degradation process of eosin obeyed a pseudo-first-order reaction. The relationship between the degradation rate constant k and the reaction temperature T could be expressed by Arrhenius equation with which the apparent activation energy Ea of 14.110 kJ· mol^-1 and the pre-exponential factor k0 of 2.065× 10^-1 min^-1 were obtained, too. The determination of hydroxyl radical was carried out by using N, N-dimethyl -p-nitrosoaniline (RNO) as a scavenger. The results showed that the hydroxyl radical plays an important role in the degradation process.
文摘Chemical effects in different aqueous solutions induced by plasma with glow discharge electrolysis (GDE) and contact glow discharge electrolysis (CGDE) are described in this paper. The experimental and discharge characteristics are also reviewed. These are followed by a discussion of their mechanisms of both anodic and cathodic CGDE..
基金financially supported by National Natural Science Foundation of China (No. 51401194)
文摘The effects of working pressure on the component, surface morphology, surface roughness, and deposition rate of glow discharge polymer (GDP) films by a trans-2-butene/hydrogen gas mixture were investigated based on plasma characteristics diagnosis. The composition and ion energy distributions of a multi-carbon (CaHs/H2) plasma mixture at different working pressures were diagnosed by an energy-resolved mass spectrometer (MS) during the GDP film deposition process. The Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (SEM) and white-fight interferometer (WLI) results were obtained to investigate the structure, morphology and roughness characterization of the deposited films, respectively. It was found that the degree of ionization of the C4H8/H2 plasma reduces with an increase in the working pressure. At a low working pressure, the C-H fragments exhibited small-mass and high ion energy in plasma. In this case, the film had a low CH3/CH2 ratio, and displayed a smooth surface without any holes, cracks or asperities. While the working pressure increased to 15 Pa, the largest number of large-mass fragments led to the deposition rate reaching a maximum of 2.11 #m h-1, and to hole defects on the film surface. However, continuing to increase the working pressure, the film surface became smooth again, and the interface between clusters became inconspicuous without etching pits.
文摘This paper discusses a study in which Ti surface alloying has been performed on copper substrates by means of a double glow discharge plasma surface alloying technique. The micro-structure, the phase structure, the micro-hardness and the distribution of Ti concentration of alloying layer were investigated in detail by XRD, SEM and so on. The effect of process parameters on the alloying layer was studied. The experimental results show that a Ti solid solution with the precipitation Cu4Ti alloying layer has been formed on the copper surface. The thickness of the alloying layer is about 120 μm and the surface titanium concentration gradually decreases from ω (Ti) = 87% to ω (Ti) = 4%. The micro-hardness of the alloying layer is between 300 HV-800 HV. Source sputtering, surface absorption, ion bombarding and high temperature diffusion are the major factors that affect the alloying layer.
基金National Natural Science Foundation of China(No.11775062).
文摘Measurements of the plasma parameters of coaxial gridded hollow electrode alternating current(AC)discharge helium plasma were carried out using an improved probe diagnostic technology.The measurements were performed under well-defined discharge conditions(chamber geometry,input power,AC power frequency,and external electrical characteristics).The problems encountered in describing the characteristics of AC discharge in many probe diagnostic methods were addressed by using an improved probe diagnostics design.This design can also be applied to the measurement of plasma parameters in many kinds of plasma sources in which the probe potential fluctuates with the discharge current.Several parameters of the hollow electrode AC helium discharge plasma were measured,including the plasma density,electron temperature,plasma density profiles,and changes in plasma density at different input power values and helium pressures.The characteristics of the coaxial gridded hollow electrode plasma determined by the experiments are suitable for comparison with plasma simulations,and for use in many applications of hollow cathode plasma.
文摘CO2 adsorption on the surface of hydrotalcite-derived mixed oxide catalysts was investigated under low pressure glow discharge plasma in opercindo conditions via FT-IR spectroscopy.Nickel catalysts were promoted with various transition metal species(Ce,Fe,La,Zr)to influence their physico-chemical properties.Fe and Zr species were successfully incorporated into hydrotalcite brucite layers.After calcination formed a single phase with Ni(Mg,A1)O mixed oxide,while La and Ce species formed separate phases.This had a consequence in the distribution of surface basic sites as well as in the affinity to CO produced upon CO2 dissociation in plasma.Plasma treatment activated the surface of prepared materials and changed their properties via the generation of strong basic sites associated with low coordinated surface oxygen anions.Moreover,the CO2 adsorption capacity of prepared materials increased after plasma treatment.
文摘Atmospheric pressure glow discharge(APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge(DBD) in non-uniform electric field are studied. It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress. Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field, the development of electron avalanches in airgap is suppressed effectively and a large space of APGD plasma in air is generated. Further,through combining electrode structures, a large area of APGD plasma in air is generated. On the other hand, by using the method of increasing the density of initial electrons, millimeter-gap glow discharge in atmospheric pressure air is formed, and a maximum gap distance between electrodes is 8 mm. By using the APGD plasma surface treatment device composed of contact electrodes, the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained. The present paper provides references for the researchers of industrial applications of plasma.
文摘Alkali metal DC arc discharge has the characteristics of easy ionization,low power consumption,high plasma temperature and ionization degree,etc,which can be applied in aerospace vehicles in various ways.In this paper,we calculate the physical property parameters of lithium vapor,one of the major alkali metals,and analyze the discharge characteristics of lithium plasma with the magnetohydrodynamic(MHD)model.The discharge effects between constant current and voltage sources are also compared.It is shown that the lithium plasma of DC arc discharge has relatively high temperature and current density.The peak temperature can reach tens of thousands of K,and the current density reaches 6 x 107 A m 2.Under the same rated power,the plasma parameters of the constant voltage source discharge are much higher than those of the constant current source discharge,which can be used as the preferred discharge mode for aerospace applications.
基金supported by National Natural Science Foundation of China(No.21367023)Natural Science Foundation of Gansu Province,China(No.1208RJZA161)Key Project of Young Teachers’ Scientific Research Promotion of Northwest Normal University of China(Nos.NWNU-LKQN-10-16 and NWNU-LKQN-12-9)
文摘In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was pre- pared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copoly- merization of acrylamide (AM) and acrylic acid (AA), in which N,N'-methylenebisacrylamide (MBA) was used as a crosslinker. A mechanism for the synthesis of P(AM-co-AA) hydrogel was proposed. To optimize the synthesis condition, the following parameters were examined in detail: the discharge voltage, discharge time, the content of the crosslinker, and the mass ratio of AM to AA. The results showed that the optimum pH range for cationic dyes removal was found to be 5.0-10.0. The P(AM-co-AA) hydrogel exhibits a very high adsorption potential and the ex- perimental adsorption capacities for Crystal violet (CV) and Methylene blue (MB) were 2974.3 mg/g and 2303.6 mg/g, respectively. The adsorption process follows a pseudo-second-order kinetic model. In addition, the adsorption mechanism of P(AM-co-AA) hydrogel for cationic dyes was also discussed.
基金Funded by the Fundamental Research Funds for the Central Universities(Nos.2232018A3-08,2232018D3-04)
文摘Titanium(Ti)nitrides were in situ grown on Ti6Al4V alloy(TA)using a glow discharge plasma nitriding(GDPN).The morphology,chemical composition,phase and mechanical property of the obtained nitrided TA were analyzed using a scanning electron microscope(SEM),energy dispersive spectroscope(EDS),X-ray diffraction(XRD),and nanoindentation tester,respectively.The tribological performances of un-nitrided and nitrided TAs were evaluated using a ball-on-plate wear tester,and the wear mechanism was also discussed in detail.The results show that the nitrided layer with the compound and diffusion layers is formed on the nitrided TA,which is composed of δ-TiN and a-Ti phases.The nanohardness and elastic modulus of nitrided TA are 6.05 and 143.13 GPa,respectively,higher than those of un-nitrided TA.The friction reduction and anti-wear performances of nitrided TA are better than those of un-nitrided TA,and the wear mechanism is primary abrasive wear,accompanying with adhesive wear,which is attributed to the formation of Ti nitrides with the high nanohardness and elastic modulus.