In this paper, we investigate the space of <em>L<sup>p</sup> p</em>-harmonic 1-forms on a complete noncompact orientable <em>δ</em>-stable hypersurface <em>M<sup>m</...In this paper, we investigate the space of <em>L<sup>p</sup> p</em>-harmonic 1-forms on a complete noncompact orientable <em>δ</em>-stable hypersurface <em>M<sup>m</sup></em> that is immersed in space form <img src="Edit_6fbc11b9-ac23-40e2-b045-0fb25419337d.png" width="35" height="23" alt="" /> with nonnegative BiRic curvature. We prove the nonexistence of <em>L<sup>p</sup> p</em>-harmonic 1-forms on <em>M<sup>m</sup></em>. Moreover, we obtain some vanishing properties for this class of harmonic 1-forms.展开更多
The complete space-like hypersurfaces with constant normal saclar curvature is discussed in a locally symmetric Lorentz space. A classified theorem is obtained by the operator L1 introduced by S Y Cheng and S T Yau [3].
It is shown that a compact spacelike hypersurface which is contained in the chronological future (or past) of an equator of de Sitter space is a totally umbilical round sphere if the kth mean curvature function Hk is ...It is shown that a compact spacelike hypersurface which is contained in the chronological future (or past) of an equator of de Sitter space is a totally umbilical round sphere if the kth mean curvature function Hk is a linear combination of Hk+1,…, Hn. This is a new angle to characterize round spheres.展开更多
Let M be an n(≥ 3)-dimensional completely non-compact spacelike hypersurface in the de Sitter space S1^n+1 (1) with constant mean curvature and nonnegative sectional curvature. It is proved that M is isometric t...Let M be an n(≥ 3)-dimensional completely non-compact spacelike hypersurface in the de Sitter space S1^n+1 (1) with constant mean curvature and nonnegative sectional curvature. It is proved that M is isometric to a hyperbolic cylinder or an Euclidean space if H ≥ 1. When 2√n-1/n〈 H 〈 1, there exists a complete rotation hypersurfaces which is not a hyperbolic cylinder.展开更多
文摘In this paper, we investigate the space of <em>L<sup>p</sup> p</em>-harmonic 1-forms on a complete noncompact orientable <em>δ</em>-stable hypersurface <em>M<sup>m</sup></em> that is immersed in space form <img src="Edit_6fbc11b9-ac23-40e2-b045-0fb25419337d.png" width="35" height="23" alt="" /> with nonnegative BiRic curvature. We prove the nonexistence of <em>L<sup>p</sup> p</em>-harmonic 1-forms on <em>M<sup>m</sup></em>. Moreover, we obtain some vanishing properties for this class of harmonic 1-forms.
基金Supported the NSF of the Education Department of Jiangsu Province(04KJD110192)
文摘The complete space-like hypersurfaces with constant normal saclar curvature is discussed in a locally symmetric Lorentz space. A classified theorem is obtained by the operator L1 introduced by S Y Cheng and S T Yau [3].
文摘It is shown that a compact spacelike hypersurface which is contained in the chronological future (or past) of an equator of de Sitter space is a totally umbilical round sphere if the kth mean curvature function Hk is a linear combination of Hk+1,…, Hn. This is a new angle to characterize round spheres.
基金The NNSFC (10371047) and the NSF (04KJD110192) of the Education Department of Jiangsu Province, China.
文摘Let M be an n(≥ 3)-dimensional completely non-compact spacelike hypersurface in the de Sitter space S1^n+1 (1) with constant mean curvature and nonnegative sectional curvature. It is proved that M is isometric to a hyperbolic cylinder or an Euclidean space if H ≥ 1. When 2√n-1/n〈 H 〈 1, there exists a complete rotation hypersurfaces which is not a hyperbolic cylinder.