Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.We used an optimized Maximum Entropy(MaxEnt)Model to predi...Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.We used an optimized Maximum Entropy(MaxEnt)Model to predict the potential distribution of winter wheat in the current period(1970-2020)and the future period(2021-2100)under four shared socioeconomic pathway scenarios(SSPs).We applied statistical downscaling methods to downscale future climate data,established a scientific and practical freezing injury index(FII)by considering the growth period of winter wheat,and analyzed the characteristics of abrupt changes in winter wheat freezing injury by using the Mann-Kendall(M-K)test.The results showed that the prediction accuracy AUC value of the MaxEnt Model reached 0.976.The minimum temperature in the coldest month,precipitation in the wettest season and annual precipitation were the main factors affecting the spatial distribution of winter wheat.The total suitable area of winter wheat was approximately 4.40×10^(7)ha in the current period.In the 2070s,the moderately suitable areas had the greatest increase by 9.02×10^(5)ha under SSP245 and the least increase by 6.53×10^(5)ha under SSP370.The centroid coordinates of the total suitable areas tended to move northward.The potential risks of freezing injury in the high-latitude and-altitude areas of the Loess Plateau,China increased significantly.The northern areas of Xinzhou in Shanxi Province,China suffered the most serious freezing injury,and the southern areas of the Loess Plateau suffered the least.Environmental factors such as temperature,precipitation and geographical location had important impacts on the suitable area distribution and freezing injury risk of winter wheat.In the future,greater attention should be paid to the northward boundaries of both the winter wheat planting areas and the areas of freezing injury risk to provide the early warning of freezing injury and implement corresponding management strategies.展开更多
Drought is a major natural disaster causing crop yield losses,while its occurrence mechanism and spatiotemporal variations in a changing climate are still not clear.Based on a long-term climatic dataset(during 1958–2...Drought is a major natural disaster causing crop yield losses,while its occurrence mechanism and spatiotemporal variations in a changing climate are still not clear.Based on a long-term climatic dataset(during 1958–2015)from weather stations in the North China Plain(NCP),the influencing mechanism of various climatic factors on drought risk of winter wheat was quantified by using sensitivity analysis,Mann-Kendall trend test and slope estimation.The results indicated that climatic factors have changed considerably over the past six decades in the growth season of winter wheat.As a result,winter wheat suffered from severe droughts(with 350 mm of water deficit during its growth season),particularly at the jointing–heading and heading–mature stages,which were critical to crop yield formation.There were large spatial and temporal variations in drought risk and climatic change factors at different growth stages of winter wheat.Despite precipitation playing a vital role in determining the spatiotemporal patterns of drought risk,high temperature and low humidity along with other climatic factors at key growth stages of winter wheat aggravated drought risk.Particularly,temperature at nearly 90%weather stations showed a notablely upward trend,which exacerbated water deficit and drought risk of winter wheat.Given the complexity and high uncertainty of climate change,these findings provide important information for adapting crop production to future climate change and accompanied droughts while ensuring food security and agricultural sustainability.展开更多
By assuming constant winter wheat varieties and agricultural practices in China, the influence of climate change on winter wheat is simulated using the corrected future climate projections under SRES A2 and A1B scenar...By assuming constant winter wheat varieties and agricultural practices in China, the influence of climate change on winter wheat is simulated using the corrected future climate projections under SRES A2 and A1B scenarios from 2012 to 2100, respectively. The results indicate that the growth of winter wheat would be strongly influenced by climate change in future. The average flowering and maturity dates of winter wheat would advance by 26 and 27 days under scenario A2, and by 23 and 24 days respectively under scenario A1B from 2012 to 2100. The simulated potential productivity of winter wheat shows a decrease of 14.3% and 12.5% for scenarios A2 and A1B respectively without the fertilization effect of CO2, while an increase of 1.3% and 0.6% with the fertilization effect of CO2. Additionally, for northern China, the simulated potential productivity would markedly decrease under both scenarios, independent with the fertilization effect of CO2, which indicates that the current planted winter wheat would be more vulnerable than that in southern China. The most likely reason is the current winter wheat varieties in northern China are winter varieties or strong winter varieties, which need some days of low temperature for dormancy. While in southern China, the winter wheat is spring or half winter varieties and can grow slowly during winter, thus, they would be affected slightly when winter temperature increases. The results of this study may have important implications for adaptation measures.展开更多
Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau(TP)as a major factor driving the East Asian summer monsoon(EASM)for its direct influence on the land-sea thermal contrast.Actua...Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau(TP)as a major factor driving the East Asian summer monsoon(EASM)for its direct influence on the land-sea thermal contrast.Actually,the TP snow increased and decreased after the late 1970s and 1990s,respectively,accompanying the two major interdecadal changes in the EASM.Although studies have explored the possible mechanisms of the EASM interdecadal variations,and change in TP snow is considered as one of the major drivers,few studies have illustrated the underlying mechanisms of the interdecadal changes in the winter TP snow.This study reveals a tripole pattern of change,with decreased winter precipitation over the TP and an increase to its north and south after the late 1990s.Further analyses through numerical experiments demonstrate that the tropical Pacific SST changes in the late 1990s can robustly affect the winter TP precipitation through regulating the Walker and regional Hadley circulation.The cooling over the tropical central-eastern Pacific can enhance the Walker circulation cell over the Pacific and induce ascending motion anomalies over the Indo-Pacific region.These anomalies further drive descending motion anomalies over the TP and ascending motion anomalies to the north through regulating the regional Hadley circulation.Therefore,the positive-negative-positive winter precipitation anomalies around the TP are formed.This study improves the previously poor understanding of TP climate variation at interdecadal timescales.展开更多
The Hooded Crane(Grus monacha)is listed as a Vulnerable species in the IUCN red list.Tidal wetland(tideland),the major habitat for wintering Hooded Cranes at East China’s Chongming Dongtan,has dramatically changed in...The Hooded Crane(Grus monacha)is listed as a Vulnerable species in the IUCN red list.Tidal wetland(tideland),the major habitat for wintering Hooded Cranes at East China’s Chongming Dongtan,has dramatically changed in the past two decades,but there is limited knowledge about the population and habitat changes of the Hooded Cranes.This study investigated the population size and distribution of wintering Hooded Cranes at Chongming Dongtan from 2000 to 2021.We used remote sensing images combined with a vegetation classification algorithm to analyse the distribution of saltmarsh vegetation.The quadrat method was used to investigate the density and weight of the underground corms of Sea Bulrush(Scirpus mariquter),the main food on tideland for the Hooded Cranes.From 2000 to 2021,the population number of wintering Hooded Cranes at Chongming Dongtan remained stable at approximately 100.In 2000,the area of Scirpus spp.and Common Reed(Phragmites australis)accounted for approximately half of the total saltmarsh area at Chongming Dongtan,respectively.The invasive Smooth Cordgrass(Spartina alterniflora)rapidly expanded on tideland in the 2000s while the Scirpus spp.was competed out and thus significantly reduced in area.After the implementation of an ecological project to control Smooth Cordgrass and to restore Scirpus spp.in the 2010s,the area of the Smooth Cordgrass decreased considerably while the area of Scirpus spp.increased.The corms of Sea Bulrush decreased on the southeastern tideland during the study period,which might be the cause of the northward movement of the foraging Hooded Cranes on tideland.We also found Hooded Cranes foraged crops in the nearby farmland in mid-winter,causing human-bird conflicts in the recent decade.Our results found that changes in habitat and food conditions on tideland impacted wintering Hooded Cranes.Foraging in farmland with human disturbance in the recent decade might be related to insufficient food on tideland.We suggest active intervention to accelerate the restoration of Sea Bulrush on tideland and reduce human disturbance in farmland to improve the habitat quality of the wintering Hooded Crane at Chongming Dongtan.展开更多
Studying the abrupt change of winter temperature(ACWT)over the Mongolian Plateau(MP,including Inner Mongolia Autonomous Region and State of Mongolia)is of great significance for understanding the spatiotemporal distri...Studying the abrupt change of winter temperature(ACWT)over the Mongolian Plateau(MP,including Inner Mongolia Autonomous Region and State of Mongolia)is of great significance for understanding the spatiotemporal distribution of temperature and the mechanism of global climate change.Monthly temperature data during 1961–2017was collected,and the abrupt change point was determined by the Mann–Kendall test and sliding ttest,to analyze the characteristics and causes of ACWT.The results showed that(a)The winter temperature has rapidly increased with a trend of 0.41℃/10a,which was significantly higher than that of the rest area of Chinese mainland,indicating that climate change in the MP was more sensitive to global warming.(b)The abrupt change point occurred in 1988,with temperature of-15.5℃and-14.1℃before and after abrupt change,respectively.The ACWT in 50°N was 1–3 years later than that in 40°N,and the isotherms of different temperatures moved northward by 10–200 km,especially-16℃isotherms moved approximately 200 km northward after 1988.(c)The Arctic Oscillation(AO)and Mongolian High(MH)anomaly affects winter temperature over the MP.When the AO is unusually strong,the MH and East Asian winter monsoon are weak,and southerly winds prevail in most regions,which is not conducive to the cold air developing southward,leading to higher winter temperature in the MP.Overwise,abnormally northerly winds prevail and temperature is low.Meanwhile,the abrupt change time of AO occurred in 1987 before winter temperature.It shows that the AO indirectly causes winter temperatures to rise by influencing the MH and is also the main driving factor of ACWT.展开更多
1临床资料患者女性,66岁,因"突发胸闷、黑矇6小时余"入院。患者于2018-04-17下午17:00左右无明显诱因出现胸闷,伴出汗、黑矇、乏力等不适,无意识丧失、头疼、胸痛、心慌、呼吸困难、腹痛、腹泻、恶心、呕吐、发热、畏寒等症状,持续...1临床资料患者女性,66岁,因"突发胸闷、黑矇6小时余"入院。患者于2018-04-17下午17:00左右无明显诱因出现胸闷,伴出汗、黑矇、乏力等不适,无意识丧失、头疼、胸痛、心慌、呼吸困难、腹痛、腹泻、恶心、呕吐、发热、畏寒等症状,持续不能缓解,为求进一步诊疗,来我院急诊。患者既往体健。查体:体温36.6℃,脉搏55次/min,呼吸19次/min,血压85/54 mmHg(1 mmHg=0.133 k Pa)。展开更多
Previous studies carried out in the East China Sea (ECS) mud area focused on long-term environmental changes in sedimentary records during the Holoeene, especially during the mid-Holocene high-stand water levels per...Previous studies carried out in the East China Sea (ECS) mud area focused on long-term environmental changes in sedimentary records during the Holoeene, especially during the mid-Holocene high-stand water levels period. These results indicate that sensitive grain size groups can be used as a sedimentary proxy to reconstruct the evolution of the East Asian Winter Monsoon (EAWM). The studies have been carried out mainly in the northern and middle portions of the Zhejiang-Fujian coastal mud, however, similar research in the southern portion and the comparison between sedimentary proxy and modern measured data of EAWM are lacking. In this paper, we focused on a sedimentary record of the past 100 years with an enhanced resolution of 1.8 years. Investigations of the southern end of the Zhejiang-Fujian coastal mud area were conducted on the basis of 21~Pb chronology, grain-size analysis and chemical element analysis. The correspondence between the mean grain size (Mz) of sediment sensitive grain size and the measured EAWM was confirmed for the first time. We found that during the recent 100 years, the variation of the mean grain size of the sensitive population in the southern portion of the Zhejiang-Fujian mud was mainly controlled by the EAWM intensity changes; and not directly related to changes in the sediment discharge from Datong station of the Changjiang River (DTSD). Finally, recent changes in the content of heavy metals in study area reflect the impact of human activities on the environment.展开更多
Climate change has inevitably had a negative impact on agricultural production and food security.Crop breeding improvement is an efficient option to adapt to future climate and increase grain production.To study the p...Climate change has inevitably had a negative impact on agricultural production and food security.Crop breeding improvement is an efficient option to adapt to future climate and increase grain production.To study the potential to provide valuable advice for breeding under climate change condition,the crop growth model was used as basis to investigate,the effects of the cultivar genotype parameters of the crop estimation through resource and environment synthesis-wheat(CERES-Wheat)model on yield under different climate scenarios.In this study,solar radiation had a positive effect on the yield of winter wheat,while the effects of daily temperature change conditions on yield were vague,particularly under a change in daily maximum temperature.For the seven cultivar genotype parameters in the CERES-Wheat model,the yield had an approximately linear increasing relationship with kernel number(G1)and kernel size(G2).Vernalization days(P1V)had a fluctuating effect on winter yield without an evident unidirectional tendency.The yield of winter wheat increased with an increase in photoperiodic response(P1D)when P1D values varied from 64.81 to 79.81.Phyllochron interval(PHINT)had a positive impact on the yield of winter wheat.This study presented the potential benefits of the crop growth model to provide directional suggestions for crop breeding.展开更多
Ski resort abandonment is more frequent due to global warming,which progressively reduces snowpack and persistence.However,projects aiming for new resorts in the Apennines have proliferated.Such economic investments a...Ski resort abandonment is more frequent due to global warming,which progressively reduces snowpack and persistence.However,projects aiming for new resorts in the Apennines have proliferated.Such economic investments are risky,especially without long-term data on snow cover duration.Our aim,thus,is to provide the first census of abandoned ski resorts in the Apennines and compare them with the resorts currently open to understand the causes that led to their abandonment.Subsequently,we explore factors behind resort failure by analyzing the relationships between climatic,geomorphological,and economic variables.Overall,we found 101 ski resorts in the Apennines,of which 28 were open,41 closed and abandoned and 32 partially closed(i.e.,closed in more than at least 7 years in the last 10 years).The closed and partially closed resorts represent 358 km of ski slopes(44%of total available).The number of structures per resort(i.e.ski lifts,chair lifts)is higher for open compared to partially closed and closed ones.Notably,the maximum elevation reached by the resorts is higher for those open(1793 m a.s.l.)than for those partially closed(1687 m a.s.l.)and especially those closed(1577 m a.s.l.).Finally,the mean size of the resorts in terms of skiable track length is larger for open(15.7 km)than partially closed(7.1 km)and closed resorts(3.2 km).The average duration of operation for abandoned resorts is 29.5 years,varying from a maximum of 56 years to a minimum of 0 years for two sites that were never opened after reconstruction.The year of abandonment is positively associated with the maximum elevation,size,and duration of operation.Furthermore,the duration of operation is negatively correlated with the construction year.Our multivariate analysis confirms and strengthens the hypothesis for the causes that lead to abandonment are multi-factorial.Most of the closed resorts are located at low altitude and have small ski areas although some higher altitude sites have also been abandoned in recent years.This information can be useful for investors,policymakers,and stakeholders who should use it as a starting point when designing and planning new resorts to avoid future failures and the loss of public money.展开更多
Located in a monsoon domain,East Asia suffers devastating natural hazards induced by anomalous monsoon behaviors.East Asian monsoon(EAM)research has traditionally been a high priority for the Chinese climate community...Located in a monsoon domain,East Asia suffers devastating natural hazards induced by anomalous monsoon behaviors.East Asian monsoon(EAM)research has traditionally been a high priority for the Chinese climate community and is particularly challenging in a changing climate where the global mean temperature has been rising.Recent advances in studies of the variabilities and mechanisms of the EAM are reviewed in this paper,focusing on the interannual to interdecadal time scales.Some new results have been achieved in understanding the behaviors of the EAM,such as the evolution of the East Asian summer monsoon(EASM),including both its onset and withdrawal over the South China Sea,the changes in the northern boundary activity of the EASM,or the transitional climate zone in East Asia,and the cycle of the EASM and the East Asian winter monsoon and their linkages.In addition,understanding of the mechanism of the EAM variability has improved in several aspects,including the impacts of different types of ENSO on the EAM,the impacts from the Indian Ocean and Atlantic Ocean,and the roles of mid-to high-latitude processes.Finally,some scientific issues regarding our understanding of the EAM are proposed for future investigation.展开更多
基金supported by the National Natural Science Foundation of China(31201168)the Basic Research Program of Shanxi Province,China(20210302123411)the earmarked fund for Modern Agro-industry Technology Research System,China(2022-07).
文摘Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.We used an optimized Maximum Entropy(MaxEnt)Model to predict the potential distribution of winter wheat in the current period(1970-2020)and the future period(2021-2100)under four shared socioeconomic pathway scenarios(SSPs).We applied statistical downscaling methods to downscale future climate data,established a scientific and practical freezing injury index(FII)by considering the growth period of winter wheat,and analyzed the characteristics of abrupt changes in winter wheat freezing injury by using the Mann-Kendall(M-K)test.The results showed that the prediction accuracy AUC value of the MaxEnt Model reached 0.976.The minimum temperature in the coldest month,precipitation in the wettest season and annual precipitation were the main factors affecting the spatial distribution of winter wheat.The total suitable area of winter wheat was approximately 4.40×10^(7)ha in the current period.In the 2070s,the moderately suitable areas had the greatest increase by 9.02×10^(5)ha under SSP245 and the least increase by 6.53×10^(5)ha under SSP370.The centroid coordinates of the total suitable areas tended to move northward.The potential risks of freezing injury in the high-latitude and-altitude areas of the Loess Plateau,China increased significantly.The northern areas of Xinzhou in Shanxi Province,China suffered the most serious freezing injury,and the southern areas of the Loess Plateau suffered the least.Environmental factors such as temperature,precipitation and geographical location had important impacts on the suitable area distribution and freezing injury risk of winter wheat.In the future,greater attention should be paid to the northward boundaries of both the winter wheat planting areas and the areas of freezing injury risk to provide the early warning of freezing injury and implement corresponding management strategies.
基金This research was funded by the National Natural Science Foundation of China(31801315,72061147001 and 31871581)the National Key Research and Development Program of China(2016YFD0300201)+1 种基金the Major Projects of the National Social Science Foundation of China(18ZDA074)the Chinese Universities Scientific Fund(2019TC015).
文摘Drought is a major natural disaster causing crop yield losses,while its occurrence mechanism and spatiotemporal variations in a changing climate are still not clear.Based on a long-term climatic dataset(during 1958–2015)from weather stations in the North China Plain(NCP),the influencing mechanism of various climatic factors on drought risk of winter wheat was quantified by using sensitivity analysis,Mann-Kendall trend test and slope estimation.The results indicated that climatic factors have changed considerably over the past six decades in the growth season of winter wheat.As a result,winter wheat suffered from severe droughts(with 350 mm of water deficit during its growth season),particularly at the jointing–heading and heading–mature stages,which were critical to crop yield formation.There were large spatial and temporal variations in drought risk and climatic change factors at different growth stages of winter wheat.Despite precipitation playing a vital role in determining the spatiotemporal patterns of drought risk,high temperature and low humidity along with other climatic factors at key growth stages of winter wheat aggravated drought risk.Particularly,temperature at nearly 90%weather stations showed a notablely upward trend,which exacerbated water deficit and drought risk of winter wheat.Given the complexity and high uncertainty of climate change,these findings provide important information for adapting crop production to future climate change and accompanied droughts while ensuring food security and agricultural sustainability.
基金supported by the impact of agrometeorology disasters on agriculture under climate change in China(No.GYHY201106021)National Basic Research Program of China(No.2012CB955301)
文摘By assuming constant winter wheat varieties and agricultural practices in China, the influence of climate change on winter wheat is simulated using the corrected future climate projections under SRES A2 and A1B scenarios from 2012 to 2100, respectively. The results indicate that the growth of winter wheat would be strongly influenced by climate change in future. The average flowering and maturity dates of winter wheat would advance by 26 and 27 days under scenario A2, and by 23 and 24 days respectively under scenario A1B from 2012 to 2100. The simulated potential productivity of winter wheat shows a decrease of 14.3% and 12.5% for scenarios A2 and A1B respectively without the fertilization effect of CO2, while an increase of 1.3% and 0.6% with the fertilization effect of CO2. Additionally, for northern China, the simulated potential productivity would markedly decrease under both scenarios, independent with the fertilization effect of CO2, which indicates that the current planted winter wheat would be more vulnerable than that in southern China. The most likely reason is the current winter wheat varieties in northern China are winter varieties or strong winter varieties, which need some days of low temperature for dormancy. While in southern China, the winter wheat is spring or half winter varieties and can grow slowly during winter, thus, they would be affected slightly when winter temperature increases. The results of this study may have important implications for adaptation measures.
基金This study was jointly supported by the Second Tibetan Plateau Scientific Expedition and Research(STEP)program[grant number 2019QZKK0102]the National Natural Science Foundation of China[grant numbers 41675083 and 41991281].
文摘Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau(TP)as a major factor driving the East Asian summer monsoon(EASM)for its direct influence on the land-sea thermal contrast.Actually,the TP snow increased and decreased after the late 1970s and 1990s,respectively,accompanying the two major interdecadal changes in the EASM.Although studies have explored the possible mechanisms of the EASM interdecadal variations,and change in TP snow is considered as one of the major drivers,few studies have illustrated the underlying mechanisms of the interdecadal changes in the winter TP snow.This study reveals a tripole pattern of change,with decreased winter precipitation over the TP and an increase to its north and south after the late 1990s.Further analyses through numerical experiments demonstrate that the tropical Pacific SST changes in the late 1990s can robustly affect the winter TP precipitation through regulating the Walker and regional Hadley circulation.The cooling over the tropical central-eastern Pacific can enhance the Walker circulation cell over the Pacific and induce ascending motion anomalies over the Indo-Pacific region.These anomalies further drive descending motion anomalies over the TP and ascending motion anomalies to the north through regulating the regional Hadley circulation.Therefore,the positive-negative-positive winter precipitation anomalies around the TP are formed.This study improves the previously poor understanding of TP climate variation at interdecadal timescales.
基金financially supported by the National Key Research and Development Program of China(2022YFF1301004)the Science and Technology Department of Shanghai(21DZ1201902)the Shanghai Landscaping and City Appearance Administrative Bureau(G201610)。
文摘The Hooded Crane(Grus monacha)is listed as a Vulnerable species in the IUCN red list.Tidal wetland(tideland),the major habitat for wintering Hooded Cranes at East China’s Chongming Dongtan,has dramatically changed in the past two decades,but there is limited knowledge about the population and habitat changes of the Hooded Cranes.This study investigated the population size and distribution of wintering Hooded Cranes at Chongming Dongtan from 2000 to 2021.We used remote sensing images combined with a vegetation classification algorithm to analyse the distribution of saltmarsh vegetation.The quadrat method was used to investigate the density and weight of the underground corms of Sea Bulrush(Scirpus mariquter),the main food on tideland for the Hooded Cranes.From 2000 to 2021,the population number of wintering Hooded Cranes at Chongming Dongtan remained stable at approximately 100.In 2000,the area of Scirpus spp.and Common Reed(Phragmites australis)accounted for approximately half of the total saltmarsh area at Chongming Dongtan,respectively.The invasive Smooth Cordgrass(Spartina alterniflora)rapidly expanded on tideland in the 2000s while the Scirpus spp.was competed out and thus significantly reduced in area.After the implementation of an ecological project to control Smooth Cordgrass and to restore Scirpus spp.in the 2010s,the area of the Smooth Cordgrass decreased considerably while the area of Scirpus spp.increased.The corms of Sea Bulrush decreased on the southeastern tideland during the study period,which might be the cause of the northward movement of the foraging Hooded Cranes on tideland.We also found Hooded Cranes foraged crops in the nearby farmland in mid-winter,causing human-bird conflicts in the recent decade.Our results found that changes in habitat and food conditions on tideland impacted wintering Hooded Cranes.Foraging in farmland with human disturbance in the recent decade might be related to insufficient food on tideland.We suggest active intervention to accelerate the restoration of Sea Bulrush on tideland and reduce human disturbance in farmland to improve the habitat quality of the wintering Hooded Crane at Chongming Dongtan.
基金financially sponsored by the National Natural Science Foundation of China(41967052)the Graduate Students’Research&Innovation Fund of Inner Mongolia Normal University(CXJJS20117)the Graduate Education Innovation Program Funded Project of Inner Mongolia Autonomous Region(SZ2020119)。
文摘Studying the abrupt change of winter temperature(ACWT)over the Mongolian Plateau(MP,including Inner Mongolia Autonomous Region and State of Mongolia)is of great significance for understanding the spatiotemporal distribution of temperature and the mechanism of global climate change.Monthly temperature data during 1961–2017was collected,and the abrupt change point was determined by the Mann–Kendall test and sliding ttest,to analyze the characteristics and causes of ACWT.The results showed that(a)The winter temperature has rapidly increased with a trend of 0.41℃/10a,which was significantly higher than that of the rest area of Chinese mainland,indicating that climate change in the MP was more sensitive to global warming.(b)The abrupt change point occurred in 1988,with temperature of-15.5℃and-14.1℃before and after abrupt change,respectively.The ACWT in 50°N was 1–3 years later than that in 40°N,and the isotherms of different temperatures moved northward by 10–200 km,especially-16℃isotherms moved approximately 200 km northward after 1988.(c)The Arctic Oscillation(AO)and Mongolian High(MH)anomaly affects winter temperature over the MP.When the AO is unusually strong,the MH and East Asian winter monsoon are weak,and southerly winds prevail in most regions,which is not conducive to the cold air developing southward,leading to higher winter temperature in the MP.Overwise,abnormally northerly winds prevail and temperature is low.Meanwhile,the abrupt change time of AO occurred in 1987 before winter temperature.It shows that the AO indirectly causes winter temperatures to rise by influencing the MH and is also the main driving factor of ACWT.
文摘1临床资料患者女性,66岁,因"突发胸闷、黑矇6小时余"入院。患者于2018-04-17下午17:00左右无明显诱因出现胸闷,伴出汗、黑矇、乏力等不适,无意识丧失、头疼、胸痛、心慌、呼吸困难、腹痛、腹泻、恶心、呕吐、发热、畏寒等症状,持续不能缓解,为求进一步诊疗,来我院急诊。患者既往体健。查体:体温36.6℃,脉搏55次/min,呼吸19次/min,血压85/54 mmHg(1 mmHg=0.133 k Pa)。
基金Supported by the National Natural Science Foundation of China(No.41030856)the Taishan Scholar Project
文摘Previous studies carried out in the East China Sea (ECS) mud area focused on long-term environmental changes in sedimentary records during the Holoeene, especially during the mid-Holocene high-stand water levels period. These results indicate that sensitive grain size groups can be used as a sedimentary proxy to reconstruct the evolution of the East Asian Winter Monsoon (EAWM). The studies have been carried out mainly in the northern and middle portions of the Zhejiang-Fujian coastal mud, however, similar research in the southern portion and the comparison between sedimentary proxy and modern measured data of EAWM are lacking. In this paper, we focused on a sedimentary record of the past 100 years with an enhanced resolution of 1.8 years. Investigations of the southern end of the Zhejiang-Fujian coastal mud area were conducted on the basis of 21~Pb chronology, grain-size analysis and chemical element analysis. The correspondence between the mean grain size (Mz) of sediment sensitive grain size and the measured EAWM was confirmed for the first time. We found that during the recent 100 years, the variation of the mean grain size of the sensitive population in the southern portion of the Zhejiang-Fujian mud was mainly controlled by the EAWM intensity changes; and not directly related to changes in the sediment discharge from Datong station of the Changjiang River (DTSD). Finally, recent changes in the content of heavy metals in study area reflect the impact of human activities on the environment.
基金This research was supported by the National Nature&Science Foundation of China(No.51879072 and No.41961124006)the Fundamental Research Funds for the Central Universities(B210202013)Jiangsu postdoctoral research support program,and the project of the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Climate change has inevitably had a negative impact on agricultural production and food security.Crop breeding improvement is an efficient option to adapt to future climate and increase grain production.To study the potential to provide valuable advice for breeding under climate change condition,the crop growth model was used as basis to investigate,the effects of the cultivar genotype parameters of the crop estimation through resource and environment synthesis-wheat(CERES-Wheat)model on yield under different climate scenarios.In this study,solar radiation had a positive effect on the yield of winter wheat,while the effects of daily temperature change conditions on yield were vague,particularly under a change in daily maximum temperature.For the seven cultivar genotype parameters in the CERES-Wheat model,the yield had an approximately linear increasing relationship with kernel number(G1)and kernel size(G2).Vernalization days(P1V)had a fluctuating effect on winter yield without an evident unidirectional tendency.The yield of winter wheat increased with an increase in photoperiodic response(P1D)when P1D values varied from 64.81 to 79.81.Phyllochron interval(PHINT)had a positive impact on the yield of winter wheat.This study presented the potential benefits of the crop growth model to provide directional suggestions for crop breeding.
文摘Ski resort abandonment is more frequent due to global warming,which progressively reduces snowpack and persistence.However,projects aiming for new resorts in the Apennines have proliferated.Such economic investments are risky,especially without long-term data on snow cover duration.Our aim,thus,is to provide the first census of abandoned ski resorts in the Apennines and compare them with the resorts currently open to understand the causes that led to their abandonment.Subsequently,we explore factors behind resort failure by analyzing the relationships between climatic,geomorphological,and economic variables.Overall,we found 101 ski resorts in the Apennines,of which 28 were open,41 closed and abandoned and 32 partially closed(i.e.,closed in more than at least 7 years in the last 10 years).The closed and partially closed resorts represent 358 km of ski slopes(44%of total available).The number of structures per resort(i.e.ski lifts,chair lifts)is higher for open compared to partially closed and closed ones.Notably,the maximum elevation reached by the resorts is higher for those open(1793 m a.s.l.)than for those partially closed(1687 m a.s.l.)and especially those closed(1577 m a.s.l.).Finally,the mean size of the resorts in terms of skiable track length is larger for open(15.7 km)than partially closed(7.1 km)and closed resorts(3.2 km).The average duration of operation for abandoned resorts is 29.5 years,varying from a maximum of 56 years to a minimum of 0 years for two sites that were never opened after reconstruction.The year of abandonment is positively associated with the maximum elevation,size,and duration of operation.Furthermore,the duration of operation is negatively correlated with the construction year.Our multivariate analysis confirms and strengthens the hypothesis for the causes that lead to abandonment are multi-factorial.Most of the closed resorts are located at low altitude and have small ski areas although some higher altitude sites have also been abandoned in recent years.This information can be useful for investors,policymakers,and stakeholders who should use it as a starting point when designing and planning new resorts to avoid future failures and the loss of public money.
基金supported jointly by the National Key Research and Development Program(Grant No.2016YFA0600604)the National Natural Science Foundation of China(Grant No.41721004)+1 种基金the Chinese Academy of Sciences Key Research Program of Frontier Sciences(Grant No.QYZDY-SSW-DQC024)the Jiangsu Collaborative Innovation Center for Climate Change
文摘Located in a monsoon domain,East Asia suffers devastating natural hazards induced by anomalous monsoon behaviors.East Asian monsoon(EAM)research has traditionally been a high priority for the Chinese climate community and is particularly challenging in a changing climate where the global mean temperature has been rising.Recent advances in studies of the variabilities and mechanisms of the EAM are reviewed in this paper,focusing on the interannual to interdecadal time scales.Some new results have been achieved in understanding the behaviors of the EAM,such as the evolution of the East Asian summer monsoon(EASM),including both its onset and withdrawal over the South China Sea,the changes in the northern boundary activity of the EASM,or the transitional climate zone in East Asia,and the cycle of the EASM and the East Asian winter monsoon and their linkages.In addition,understanding of the mechanism of the EAM variability has improved in several aspects,including the impacts of different types of ENSO on the EAM,the impacts from the Indian Ocean and Atlantic Ocean,and the roles of mid-to high-latitude processes.Finally,some scientific issues regarding our understanding of the EAM are proposed for future investigation.