Human dihydroorotate dehydrogenase(DHODH) is a viable target for the development of therapeutics to treat cancer and immunological diseases, such as rheumatoid arthritis(RA), psoriasis and multiple sclerosis(MS). Here...Human dihydroorotate dehydrogenase(DHODH) is a viable target for the development of therapeutics to treat cancer and immunological diseases, such as rheumatoid arthritis(RA), psoriasis and multiple sclerosis(MS). Herein, a series of acrylamide-based novel DHODH inhibitors as potential RA treatment agents were designed and synthesized. 2-Acrylamidobenzoic acid analog 11 was identified as the lead compound for structureeactivity relationship(SAR) studies. The replacement of the phenyl group with naphthyl moieties improved inhibitory activity significantly to double-digit nanomolar range.Further structure optimization revealed that an acrylamide with small hydrophobic groups(Me, Cl or Br)at the 2-position was preferred. Moreover, adding a fluoro atom at the 5-position of the benzoic acid enhanced the potency. The optimization efforts led to potent compounds 42 and 53-55 with IC50 values of 41, 44, 32, and 42 nmol/L, respectively. The most potent compound 54 also displayed favorable pharmacokinetic(PK) profiles and encouraging in vivo anti-arthritic effects in a dose-dependent manner.展开更多
Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide,such as the on-going outbreak of the novel coronavirus SARS-CoV-2.Herein,we identified two potent inhibitors of human DHODH,S31...Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide,such as the on-going outbreak of the novel coronavirus SARS-CoV-2.Herein,we identified two potent inhibitors of human DHODH,S312 and S416,with favorable drug-likeness and pharmacokinetic profiles,which all showed broad-spectrum antiviral effects against various RNA viruses,including influenza A virus,Zika virus,Ebola virus,and particularly against SARS-CoV-2.Notably,S416 is reported to be the most potent inhibitor so far with an EC5o of 17 nmol/L and an SI value of 10,505.88 in infec-ted cells.Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells.This work demonstrates that both S312/S416 and old drugs(Leflunomide/Teriflunomide)with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide,no matter such viruses are mutated or not.展开更多
基金supported by the National Key Research and Development Program (2017YFD0200505 to Xiaoyong Xu,2016YFA0502304 to Honglin Li, China)the National Natural Science Foundation of China (81825020 to Honglin Li, 81803437to Shiliang Li)+5 种基金the National Science&Technology Major Project“Key New Drug Creation and Manufacturing Program”(2018ZX09711002, China)the Fundamental Research Funds for the Central Universitiesthe Shanghai Foundation of Science and Technology (15431902100 to Xiaoyong Xu)sponsored by Shanghai Sailing Program (No. 18YF1405100,China)sponsored by the National Program for Special Supports of Eminent ProfessionalsNational Program for Support of Top-Notch Young Professionals,China。
文摘Human dihydroorotate dehydrogenase(DHODH) is a viable target for the development of therapeutics to treat cancer and immunological diseases, such as rheumatoid arthritis(RA), psoriasis and multiple sclerosis(MS). Herein, a series of acrylamide-based novel DHODH inhibitors as potential RA treatment agents were designed and synthesized. 2-Acrylamidobenzoic acid analog 11 was identified as the lead compound for structureeactivity relationship(SAR) studies. The replacement of the phenyl group with naphthyl moieties improved inhibitory activity significantly to double-digit nanomolar range.Further structure optimization revealed that an acrylamide with small hydrophobic groups(Me, Cl or Br)at the 2-position was preferred. Moreover, adding a fluoro atom at the 5-position of the benzoic acid enhanced the potency. The optimization efforts led to potent compounds 42 and 53-55 with IC50 values of 41, 44, 32, and 42 nmol/L, respectively. The most potent compound 54 also displayed favorable pharmacokinetic(PK) profiles and encouraging in vivo anti-arthritic effects in a dose-dependent manner.
基金This work was supported in part by the National Key Research and Development Program Grants(2018FYA0900801 and 2018ZX10101004003001 to K.X.2016YFA0502304 to H.L.)the National Natural Science Foundation of China(Grants 31922004 and 81772202 to K.X.,81825020 to H.L.)+2 种基金the National Science&Technology Major Project"Key New Drug Creation and Manufac-turing Program"of China(Grant 2018ZX09711002 to H.L.)Appli-cation&Frontier Research Program of Wuhan Govemment(2019020701011463 to K.X.).Honglin Li is also sponsored by the National Program for Special Supports of Eminent Professionals and National Program for Support of Top-Notch Young ProfessionalsWe are grateful to Taikang Insurance Group Co,Ltd,Beiing Taikang Yicai Foundation,and Special Fund for COVID-19 Research of Wuhan University for their great supports to this work.
文摘Emerging and re-emerging RNA viruses occasionally cause epidemics and pandemics worldwide,such as the on-going outbreak of the novel coronavirus SARS-CoV-2.Herein,we identified two potent inhibitors of human DHODH,S312 and S416,with favorable drug-likeness and pharmacokinetic profiles,which all showed broad-spectrum antiviral effects against various RNA viruses,including influenza A virus,Zika virus,Ebola virus,and particularly against SARS-CoV-2.Notably,S416 is reported to be the most potent inhibitor so far with an EC5o of 17 nmol/L and an SI value of 10,505.88 in infec-ted cells.Our results are the first to validate that DHODH is an attractive host target through high antiviral efficacy in vivo and low virus replication in DHODH knock-out cells.This work demonstrates that both S312/S416 and old drugs(Leflunomide/Teriflunomide)with dual actions of antiviral and immuno-regulation may have clinical potentials to cure SARS-CoV-2 or other RNA viruses circulating worldwide,no matter such viruses are mutated or not.