期刊文献+
共找到75,040篇文章
< 1 2 250 >
每页显示 20 50 100
Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization:A review 被引量:5
1
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Kaiqiang Guo Mengyan Cheng Heng Chen Cuicui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期217-230,共14页
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a... Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC. 展开更多
关键词 coal gasification fine slag residual carbon pore structure surface functional groups microcrystalline structure flotation sep-aration resource utilization
下载PDF
Workout Action Recognition in Video Streams Using an Attention Driven Residual DC-GRU Network 被引量:1
2
作者 Arnab Dey Samit Biswas Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2024年第5期3067-3087,共21页
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i... Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd dataset serves as a catalyst for the development ofmore robust and effective fitnesstracking systems and ultimately promotes healthier lifestyles through improved exercise monitoring and analysis. 展开更多
关键词 Workout action recognition video stream action recognition residual network GRU ATTENTION
下载PDF
Residual stress modeling of mitigated fused silica damage sites with CO_(2)laser annealing
3
作者 张传超 廖威 +3 位作者 张丽娟 蒋晓龙 方振华 蒋晓东 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期509-514,共6页
A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the resi... A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the residual strain from the differences in thermoelastic contraction of fused silica with different fictive temperatures from the initial frozen-in temperatures to ambient temperature.The residual stress fields of mitigated damage sites for the CO_(2)laser-annealed case are obtained by a finite element analysis of equilibrium equations and constitutive equations.The simulated results indicate that the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a complex thermal history.The calculated maximum hoop stress is in good agreement with the reported experimental result.The estimated optical retardance profiles from the calculated radial and hoop stress fields are consistent with the photoelastic measurements.These results provide sufficient evidence to demonstrate the suitability of the proposed model for describing the residual stresses of mitigated fused silica damage sites after CO_(2)laser annealing. 展开更多
关键词 fused silica damage mitigation residual stress laser annealing
下载PDF
Molecular simulation study on the evolution process of hydrate residual structures into hydrate
4
作者 Liwei Cheng Yunfei Li +4 位作者 Jinlong Cui Huibo Qin Fulong Ning Bei Liu Guangjin Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第5期79-91,共13页
The clathrate hydrate memory effect is a fascinating phenomenon with potential applications in carbon capture,utilization and storage(CCUS),gas separation,and gas storage as it can accelerate the secondary formation o... The clathrate hydrate memory effect is a fascinating phenomenon with potential applications in carbon capture,utilization and storage(CCUS),gas separation,and gas storage as it can accelerate the secondary formation of clathrate hydrate.However,the underlying mechanism of this effect remains unclear.To gain a better understanding of the mechanism,we conducted molecular dynamic simulations to simulate the initial formation and reformation processes of methane hydrate.In this work,we showed the evolution process of hydrate residual structures into hydrate cages.The simulation results indicate that the residual structures are closely related to the existence of hydrate memory effect,and the higher the contribution of hydrate dissociated water to the hydrate nucleation process,the faster the hydrate nucleation.After hydrate dissociation,the locally ordered structures still exist after hydrate dissociation and can promote the formation of cluster structures,thus accelerating hydrate nucleation.Additionally,the nucleation process of hydrate and the formation process of clusters are inseparable.The size of clusters composed of cup-cage structures is critical for hydrate nucleation.The residence time at high temperature after hydrate decomposition will affect the strength of the hydrate memory effect.Our simulation results provide microscopic insights into the occurrence of the hydrate memory effect and shed light on the hydrate reformation process at the molecular scale. 展开更多
关键词 Memory effect Molecular simulation Hydrate reformation residual structures
下载PDF
Residual alkali-evoked cross-linked polymer layer for anti-air-sensitivity LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)cathode
5
作者 Chao Zhao Xuebao Li +7 位作者 Yun Zhao Jingjing He Yuanpeng Cao Wei Luo Ding Wang Jianguo Duan Xianshu Wang Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期450-458,共9页
High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)M... High-energy density lithium-ion batteries(LIBs)with layered high-nickel oxide cathodes(LiNi_(x)Co_(y)Mn_(1-x-y)O_(2),x≥0.8)show great promise in consumer electronics and vehicular applications.However,LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)faces challenges related to capacity decay caused by residual alkalis owing to high sensitivity to air.To address this issue,we propose a hazardous substances upcycling method that fundamentally mitigates alkali content and concurrently induces the emergence of an anti-air-sensitive layer on the cathode surface.Through the neutralization of polyacrylic acid(PAA)with residual alkalis and then coupling it with 3-aminopropyl triethoxysilane(KH550),a stable and ion-conductive cross-linked polymer layer is in situ integrated into the LiNi_(0.89)Co_(0.06)Mn_(0.05)O_(2)(NCM)cathode.Our characterization and measurements demonstrate its effectiveness.The NCM material exhibits impressive cycling performance,retaining 88.4%of its capacity after 200 cycles at 5 C and achieving an extraordinary specific capacity of 170.0 mA h g^(-1) at 10 C.Importantly,this layer on the NCM efficiently suppresses unfavorable phase transitions,severe electrolyte degradation,and CO_(2)gas evolution,while maintaining commendable resistance to air exposure.This surface modification strategy shows widespread potential for creating air-stable LiNi_(x)Co_(y)Mn_(1-x-y)O_(2)cathodes,thereby advancing high-performance LIBs. 展开更多
关键词 Lithium-ion batteries Nickel-rich layered cathode residual alkalis Cross-linked polyme rmodification Airsensitivity
下载PDF
Potential value of detection of minimal residual disease in colorectal cancer following radical resection
6
作者 Wenji Pu Fang Chen +5 位作者 Yuan Tang Yanling Qu Yunzhu Han Jiandong Zha Jing Jin Fengming Kong 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2024年第4期442-454,共13页
Although there has been significant advancement in the identification and management of colorectal cancer(CRC)in recent years,there is still room for improvement in the current standard treatment regimen.One area of c... Although there has been significant advancement in the identification and management of colorectal cancer(CRC)in recent years,there is still room for improvement in the current standard treatment regimen.One area of concern is the lack of reliable tumor markers to predict treatment efficacy and guide tailored care.Due to its dynamic,effective,and non-invasive benefits over tissue biopsy,the detection of minimal or molecular residual lesions(MRD)based on circulating tumor DNA(ctDNA)is beneficial to the clinical development of drugs for patients with CRC after radical treatment,as well as for continuous monitoring of tumor recurrence and malignancy molecular gene evolution.The detection of ctDNA can currently be used to guide individual postoperative auxiliary treatment decisions(upgrade or downgrade treatment)in CRC,stratify the risk of clinical recurrence more precisely,and predict the risk of recurrence in advance of imaging examination,according to a large number of observational or prospective clinical studies.With increasing clarity comes the possibility of selecting a regimen of treatment based on postoperative ctDNA,which also improves the accuracy of clinical recurrence risk assessment for CRC.Therefore,it is anticipated that the identification of ctDNA would alter the current framework for dealing with CRC and lead to individualized,stratified precision therapy;however,additional confirmation will require subsequent high-quality,prospective,large-scale randomized controlled studies.This article will provide an overview of the definition and clinical significance of MRD,the primary indications and technological challenges for MRD detection,along with the advancement in clinical research about ctDNA detection following radical resection of the CRC. 展开更多
关键词 Colorectal cancer minimal residual disease circulating tumor DNA PROGNOSIS RECURRENCE biomarkers
下载PDF
Effects of soil crust on the collapsing erosion of colluvial deposits with granite residual soil
7
作者 LIU Weiping ZENG Bohan +1 位作者 WANG Tianhuan DUAN Junyi 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2579-2591,共13页
Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion vo... Collapsing erosion is a unique phenomenon commonly observed on the granite residue hillslopes in the tropical and subtropical regions of southern China,characterized by its abrupt occurrence and significant erosion volumes.However,the impacts of soil crust conditions on the erosion of colluvial deposits with granite residual soils have only been studied to a limited extent.To address this issue,this study investigates the impacts of three soil crust conditions(i.e.,without crust,10-minute crust,and 20-minute crust)on gully morphology,rainfall infiltration,and runoff and sediment yield during slope erosion of colluvial deposits with granite residues(classified as Acrisols)in Yudu County,Ganzhou City,Jiangxi Province,China,using simulated rainfall tests and photographic methods.The results showed that as the strength of the soil crust increased,the capacity of moisture infiltration and the width and depth of the gully as well as the sediment concentration and yield ratio decreased;at the same time,the runoff ratio increased.The sediment yield in the without-crust test was found to be 1.24 and 1.43 times higher than that observed in the 10-minute crust and 20-minute crust tests,respectively.These results indicate that soil crusts can effectively prevent slope erosion and moisture infiltration,while providing valuable insights for the management of soil erosion in natural environments. 展开更多
关键词 Granite residual soil Colluvial deposits Slope erosion Soil crust Sediment yield
下载PDF
A modified smoothed particle hydrodynamics method considering residual stress for simulating failure and its application in layered rock mass
8
作者 XIA Chengzhi SHI Zhenming KOU Huanjia 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2091-2112,共22页
Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strat... Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strategy considering residual stress in the base bond SPH method was proposed to simulate failures in layered rocks and slopes and verified by experimental results and other simulation methods(i.e.,the discrete element method).Modified Mohr–Coulomb failure criterion was applied to distinguish the mixed failure of tensile and shear.Bond fracture markψwas introduced to improve the kernel function after tensile damage,and the calculation of residual stress after the damage was derived after shear damage.Numerical simulations were carried out to evaluate its performance under different stress and scale conditions and to verify its effectiveness in realistically reproducing crack initiation and propagation and coalescence,even fracture and separation.The results indicate that the improved cracking strategy precisely captures the fracture and failure pattern in layered rocks and rock slopes.The residual stress of brittle tock is correctly captured by the improved SPH method.The improved SPH method that considers residual strength shows an approximately 13%improvement in accuracy for the safety factor of anti-dip layered slopes compared to the method that does not consider residual strength,as validated against analytical solutions.We infer that the improved SPH method is effective and shows promise for applications to continuous and discontinuous rock masses. 展开更多
关键词 Smoothed particle hydrodynamics Cracking strategy residual stress Layered rock Crack propagation
下载PDF
Attention-Based Residual Dense Shrinkage Network for ECG Denoising
9
作者 Dengyong Zhang Minzhi Yuan +3 位作者 Feng Li Lebing Zhang Yanqiang Sun Yiming Ling 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2809-2824,共16页
Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affec... Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affectsthe subsequent pathological analysis.Therefore,the effective removal of the noise from ECG signals has becomea top priority in cardiac diagnostic research.Aiming at the problem of incomplete signal shape retention andlow signal-to-noise ratio(SNR)after denoising,a novel ECG denoising network,named attention-based residualdense shrinkage network(ARDSN),is proposed in this paper.Firstly,the shallow ECG characteristics are extractedby a shallow feature extraction network(SFEN).Then,the residual dense shrinkage attention block(RDSAB)isused for adaptive noise suppression.Finally,feature fusion representation(FFR)is performed on the hierarchicalfeatures extracted by a series of RDSABs to reconstruct the de-noised ECG signal.Experiments on the MIT-BIHarrhythmia database and MIT-BIH noise stress test database indicate that the proposed scheme can effectively resistthe interference of different sources of noise on the ECG signal. 展开更多
关键词 Electrocardiogram signal denoising signal-to-noise ratio attention-based residual dense shrinkage network MIT-BIH
下载PDF
Abnormal Traffic Detection for Internet of Things Based on an Improved Residual Network
10
作者 Tingting Su Jia Wang +2 位作者 Wei Hu Gaoqiang Dong Jeon Gwanggil 《Computers, Materials & Continua》 SCIE EI 2024年第6期4433-4448,共16页
Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportati... Along with the progression of Internet of Things(IoT)technology,network terminals are becoming continuously more intelligent.IoT has been widely applied in various scenarios,including urban infrastructure,transportation,industry,personal life,and other socio-economic fields.The introduction of deep learning has brought new security challenges,like an increment in abnormal traffic,which threatens network security.Insufficient feature extraction leads to less accurate classification results.In abnormal traffic detection,the data of network traffic is high-dimensional and complex.This data not only increases the computational burden of model training but also makes information extraction more difficult.To address these issues,this paper proposes an MD-MRD-ResNeXt model for abnormal network traffic detection.To fully utilize the multi-scale information in network traffic,a Multi-scale Dilated feature extraction(MD)block is introduced.This module can effectively understand and process information at various scales and uses dilated convolution technology to significantly broaden the model’s receptive field.The proposed Max-feature-map Residual with Dual-channel pooling(MRD)block integrates the maximum feature map with the residual block.This module ensures the model focuses on key information,thereby optimizing computational efficiency and reducing unnecessary information redundancy.Experimental results show that compared to the latest methods,the proposed abnormal traffic detection model improves accuracy by about 2%. 展开更多
关键词 Abnormal network traffic deep learning residual network multi-scale feature extraction max-feature-map
下载PDF
Ghost Module Based Residual Mixture of Self-Attention and Convolution for Online Signature Verification
11
作者 Fangjun Luan Xuewen Mu Shuai Yuan 《Computers, Materials & Continua》 SCIE EI 2024年第4期695-712,共18页
Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational h... Online Signature Verification (OSV), as a personal identification technology, is widely used in various industries.However, it faces challenges, such as incomplete feature extraction, low accuracy, and computational heaviness. Toaddress these issues, we propose a novel approach for online signature verification, using a one-dimensionalGhost-ACmix Residual Network (1D-ACGRNet), which is a Ghost-ACmix Residual Network that combines convolutionwith a self-attention mechanism and performs improvement by using Ghost method. The Ghost-ACmix Residualstructure is introduced to leverage both self-attention and convolution mechanisms for capturing global featureinformation and extracting local information, effectively complementing whole and local signature features andmitigating the problem of insufficient feature extraction. Then, the Ghost-based Convolution and Self-Attention(ACG) block is proposed to simplify the common parts between convolution and self-attention using the Ghostmodule and employ feature transformation to obtain intermediate features, thus reducing computational costs.Additionally, feature selection is performed using the random forestmethod, and the data is dimensionally reducedusing Principal Component Analysis (PCA). Finally, tests are implemented on the MCYT-100 datasets and theSVC-2004 Task2 datasets, and the equal error rates (EERs) for small-sample training using five genuine andforged signatures are 3.07% and 4.17%, respectively. The EERs for training with ten genuine and forged signaturesare 0.91% and 2.12% on the respective datasets. The experimental results illustrate that the proposed approacheffectively enhances the accuracy of online signature verification. 展开更多
关键词 Online signature verification feature selection ACG block ghost-ACmix residual structure
下载PDF
Radar Signal Intra-Pulse Modulation Recognition Based on Deep Residual Network
12
作者 Fuyuan Xu Guangqing Shao +3 位作者 Jiazhan Lu Zhiyin Wang Zhipeng Wu Shuhang Xia 《Journal of Beijing Institute of Technology》 EI CAS 2024年第2期155-162,共8页
In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intr... In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intra-pulse modulation signal type based on deep residual network.The basic principle of the recognition method is to obtain the transformation relationship between the time and frequency of complex radar intra-pulse modulation signal through short-time Fourier transform(STFT),and then design an appropriate deep residual network to extract the features of the time-frequency map and complete a variety of complex intra-pulse modulation signal type recognition.In addition,in order to improve the generalization ability of the proposed method,label smoothing and L2 regularization are introduced.The simulation results show that the proposed method has a recognition accuracy of more than 95%for complex radar intra-pulse modulation sig-nal types under low SNR(2 dB). 展开更多
关键词 intra-pulse modulation low signal-to-noise deep residual network automatic recognition
下载PDF
Transcatheter Closure of Postoperative Residual Atrial or Ventricular Septal Shunts in Patients with Congenital Heart Disease
13
作者 Jiawang Xiao Jianming Wang +3 位作者 Zhongchao Wang Lili Meng Ming Zhao Qiguang Wang 《Congenital Heart Disease》 SCIE 2024年第3期293-303,共11页
Background:Transcatheter closure(TCC)has emerged as the preferred treatment for selected congenital heart disease(CHD).While TCC offers benefits for patients with postoperative residual shunts,understanding its mid-an... Background:Transcatheter closure(TCC)has emerged as the preferred treatment for selected congenital heart disease(CHD).While TCC offers benefits for patients with postoperative residual shunts,understanding its mid-and long-term efficacy and safety remains crucial.Objective:This study aims to assess the mid-and long-term safety and efficacy of TCC for patients with residual atrial or ventricular septal shunts following CHD correction.Methods:In this consecutive retrospective study,we enrolled 35 patients with residual shunt who underwent TCC or surgical repair of CHD between June 2011 to October 2022.TCC candidacy was determined based on established criteria.Echocardiography and electrocardiogram were conducted during the perioperative period and continued as part of long-term follow-up.Results:Among the patients,5(14.3%)exhibited interatrial shunt-ing,while 30(85.7%)had interventricular shunting.TCC was successfully implemented in 33 of 35 patients,with exceptions in two cases of post-ventricular septal defect repair due to anatomical challenges involving the shape and aortic angulation.This resulted in a TCC success rate of 94.3%.Trace residual shunt was detected in two interventricular shunting cases and a mild residual shunt in one interventricular shunting case;all resolved by the three-month follow-up after TCC.Minor complications included one hematoma at the puncture site and one transient junctional rhythm during the perioperative period.During a median follow-up of 73 months,there were no instances of residual shunt,device embolization,occluder displacement,valve insufficiency,malignant arrhythmia,infective endocarditis,death,or other serious complications.Conclusion:TCC is an effective and safe therapy for patients with residual atrial or ventricular septal shunts following CHD correction.Thesefindings support the consideration of TCC as the preferred treatment option for appropriate patient populations. 展开更多
关键词 Congenital heart disease residual shunt transcatheter closure surgical repair
下载PDF
A method for establishing a bearing residual life prediction model for process enhancement equipment based on rotor imbalance response analysis
14
作者 Feng Wang Haoran Li +3 位作者 Zhenghui Zhang Yan Bai Hong Yin Jing Bian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期203-215,共13页
A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adh... A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents. 展开更多
关键词 Rotating packed bed Mass imbalance Harmonic response analysis residual life Prediction model
下载PDF
CRISPR/Cas9-mediated NlInR2 mutants:Analyses of residual mRNA and truncated proteins
15
作者 Jun Lü Jingxiang Chen +4 位作者 Yutao Hu Lin Chen Shihui Li Yibing Zhang Wenqing Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期2006-2017,共12页
CRISPR/Cas9 technology is a powerful genome manipulation tool in insects.However,little is known about whether mRNA and protein of a target gene are completely cleared in homozygous mutants.This study generated homozy... CRISPR/Cas9 technology is a powerful genome manipulation tool in insects.However,little is known about whether mRNA and protein of a target gene are completely cleared in homozygous mutants.This study generated homozygous mutants of the insulin receptor gene 2(NlInR2)in the brown planthopper(Nilaparvata lugens)using CRISPR/Cas9 genome editing.Both frameshift mutants,E5_D17 and E6_I7,differentiated towards long wings,but there were differences in wing morphology,with E5_D17 showing wing deformities.Subsequent investigations revealed the presence of residual expression of NlInR2 mRNA in both mutants,as well as the occurrence of spliceosomes featuring exon skipping splicing in E5_D17.Additionally,the E5_D17 exhibited the detection of N-terminally truncated NlInR2 protein.RNA interference experiments indicated that the knockdown of NlInR2 expression in the E5_D17 mutant line increased the proportion of wing deformities from 11.1 to 65.6%,suggesting that the residual NlInR2 mRNA of the E5_D17 mutant might have retained some genetic functions.Our results imply that systematic characterization of residual protein expression or function in CRISPR/Cas9-generated mutant lines is necessary for phenotypic interpretation. 展开更多
关键词 CRISPR/Cas9 Nilaparvata lugens residual mRNA skipping exon truncated protein
下载PDF
Water retention behavior and shear strength of artificially cemented granite residual soil subjected to free drying
16
作者 Xinxin Dong Xiaohua Bao +2 位作者 Hongzhi Cui Changjie Xu Xiangsheng Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4697-4710,共14页
Artificially cemented soils have been widely used as filling materials in highway and railway construction.The shear strength evolution of filling materials upon moist variation can determine the stability of subgrade... Artificially cemented soils have been widely used as filling materials in highway and railway construction.The shear strength evolution of filling materials upon moist variation can determine the stability of subgrade and embankments.This study conducted water retention tests,MIP tests,and multi-stage triaxial shear tests on cement-treated granite residual soil(GRS)to determine its water retention curve(WRC)upon free drying,pore structure,and peak shear strength qf,respectively.The water retention behavior and shear strength evolution upon free drying were modeled based on the dual-porosity structure of cement-treated GRS and the effective stress principle,respectively.Results show that the drying-WRC is bimodal and higher cement dosage yields a more severe decrease in the water retention capacity within a specific suction range.For a given confining pressure,the peak shear strength qf increased with increasing cement dosage or suction value s.The peak shear strength qf also solely depends on the suction value in the peak stress state.In addition,the cement-treated GRS has a bimodal pore size distribution curve,and its macro-and micro-void ratios remain almost unchanged after free drying.The bimodal drying-WRC of the cement-treated GRS can be modeled by differentiating the water retention mechanisms in macro-and micro-pores.Moreover,using the macro-pore degree of saturation as the effective stress parameterχ=S_(rM),the q_(f)–p′_(f)relationship(where p′_(f)is the effective mean pressure at failure)under various suction and stress conditions can be unified,and the q_(f)–s relationships at various net confining pressuresσ_(3),net can be well reproduced.These findings can help design subgrade and embankments constructed by artificially cemented GRS and assess their safe operation upon climate change. 展开更多
关键词 Granite residual soil Cement treatment DUAL-POROSITY Water retention behavior Unsaturated shear strength
下载PDF
Effect of quenching cooling rate on residual stress and microstructure evolution of 6061 aluminum alloy
17
作者 HUANG Ke YI You-ping +4 位作者 HUANG Shi-quan HE Hai-lin LIU Jie HUA Hong-en TANG Yun-jian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2167-2180,共14页
In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using ... In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process. 展开更多
关键词 6061 aluminum alloy residual stress cooling rate cryogenic cooling mechanical properties microstructure evolution
下载PDF
A Deep Residual PLS for Data-Driven Quality Prediction Modeling in Industrial Process
18
作者 Xiaofeng Yuan Weiwei Xu +2 位作者 Yalin Wang Chunhua Yang Weihua Gui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1777-1785,共9页
Partial least squares(PLS)model is the most typical data-driven method for quality-related industrial tasks like soft sensor.However,only linear relations are captured between the input and output data in the PLS.It i... Partial least squares(PLS)model is the most typical data-driven method for quality-related industrial tasks like soft sensor.However,only linear relations are captured between the input and output data in the PLS.It is difficult to obtain the remaining nonlinear information in the residual subspaces,which may deteriorate the prediction performance in complex industrial processes.To fully utilize data information in PLS residual subspaces,a deep residual PLS(DRPLS)framework is proposed for quality prediction in this paper.Inspired by deep learning,DRPLS is designed by stacking a number of PLSs successively,in which the input residuals of the previous PLS are used as the layer connection.To enhance representation,nonlinear function is applied to the input residuals before using them for stacking highlevel PLS.For each PLS,the output parts are just the output residuals from its previous PLS.Finally,the output prediction is obtained by adding the results of each PLS.The effectiveness of the proposed DRPLS is validated on an industrial hydrocracking process. 展开更多
关键词 Deep residual partial least squares(DRPLS) nonlinear function quality prediction soft sensor
下载PDF
Field testing of shear strength of granite residual soils
19
作者 Song Yin Pengfei Liu +3 位作者 Xianwei Zhang Wenyuan He Pan Yan Yuzhou Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3718-3732,共15页
The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of g... The characteristics of residual soils are very different from those of sedimentary soils.Although the strength characteristics of sedimentary soils have been studied extensively,the shear strength characteristics of granitic residual soils(GRS)subjected to the weathering of parent rocks have rarely been investigated.In this study,the shear strength characteristics of GRS in the Taishan area of southeast China(TSGRS)were studied by field and laboratory tests.The field tests consisted of a cone penetration test(CPT),borehole shear test(BST),self-boring pressuremeter test(SBPT),and seismic dilatometer Marchetti test(SDMT).The shortcomings of laboratory testing are obvious,with potential disturbances arising through the sampling,transportation,and preparation of soil samples.Due to the special structure of GRS samples and the ease of disturbance,the results obtained from laboratory tests were generally lower than those obtained from situ tests.The CPT and scanning electron microscopy(SEM)results indicated significant weathering and crustal hardening in the shallow TSGRS.This resulted in significant differences in the strength and strength parameters of shallow soil obtained by the BST.Based on the SDMT and SBPT results,a comprehensive evaluation method of shear strength for TSGRS was proposed.The SBPT was suitable for evaluating the strength of shallow GRS.The material index(ID)and horizontal stress index(KD)values obtained by the SDMT satisfied the empirical relationship proposed by Marchetti based on the ID index,and were therefore considered suitable for the evaluation of the shear strength of deep GRS. 展开更多
关键词 Granite residual soils Shear strength Field tests Self-boring pressuremeter Seismic dilatometer Borehole shear test
下载PDF
Direct scaling of residual displacements for bilinear and pinching oscillators
20
作者 Mohammad Saifullah Vinay K.Gupta 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期129-149,共21页
The estimation of residual displacements in a structure due to an anticipated earthquake event has increasingly become an important component of performance-based earthquake engineering because controlling these displ... The estimation of residual displacements in a structure due to an anticipated earthquake event has increasingly become an important component of performance-based earthquake engineering because controlling these displacements plays an important role in ensuring cost-feasible or cost-effective repairs in a damaged structure after the event.An attempt is made in this study to obtain statistical estimates of constant-ductility residual displacement spectra for bilinear and pinching oscillators with 5%initial damping,directly in terms of easily available seismological,site,and model parameters.None of the available models for the bilinear and pinching oscillators are useful when design spectra for a seismic hazard at a site are not available.The statistical estimates of a residual displacement spectrum are proposed in terms of earthquake magnitude,epicentral distance,site geology parameter,and three model parameters for a given set of ductility demand and a hysteretic energy capacity coefficient in the case of bilinear and pinching models,as well as for a given set of pinching parameters for displacement and strength at the breakpoint in the case of pinching model alone.The proposed scaling model is applicable to horizontal ground motions in the western U.S.for earthquake magnitudes less than 7 or epicentral distances greater than 20 km. 展开更多
关键词 residual displacement spectrum bilinear hysteresis model pinching hysteresis model nonlinear analysis scaling model
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部