The optimal tracking performance for integrator and dead time plant in the case where plant uncertainty and control energy constraints are to be considered jointly is inrestigated. Firstly, an average cost function of...The optimal tracking performance for integrator and dead time plant in the case where plant uncertainty and control energy constraints are to be considered jointly is inrestigated. Firstly, an average cost function of the tracking error and the plant input energy over a class of stochastic model errors are defined. Then, we obtain an internal model controller design method that minimizes the average performance and further studies optimal tracking performance for integrator and dead time plant in the simultaneous presence of plant uncertainty and control energy constraint. The results can be used to evaluate optimal tracking performance and control energy in practical designs.展开更多
The estimation of key rate is an important aspect of the quantum key distribution process, especially in the use of dead time. In this paper, we demonstrate a numerical simulation to estimate the average detection pro...The estimation of key rate is an important aspect of the quantum key distribution process, especially in the use of dead time. In this paper, we demonstrate a numerical simulation to estimate the average detection probability and the key rate. Using our method, the estimated average detection probability is better than the previous result. Besides, we can easily find the best dead time, especially when considering the impact of after pulse.展开更多
This paper presents a width controller,a dead time controller,a discontinuous current mode(DCM) controller and a frequency skipping modulation(FSM) controller for a high frequency high efficiency buck DC-DC conver...This paper presents a width controller,a dead time controller,a discontinuous current mode(DCM) controller and a frequency skipping modulation(FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range,especially at high switching frequency,the dead time controller and width controller are applied to enhance the high load efficiency,while the DCM controller and FSM controller are proposed to increase the light load efficiency.The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35μm CMOS process,and the measured results show that the efficiency of the buck DC-DC converter is above 80%over a wide load current range from 8 to 570 mA,and the peak efficiency is 86%at 10 MHz switching frequency.展开更多
In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The ...In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.展开更多
Developed tools of Remote Sensing and Geographic Information System are rapidly spread in recent years in order to manage natural resources and to monitor environmental changes. This research aims to study the spatial...Developed tools of Remote Sensing and Geographic Information System are rapidly spread in recent years in order to manage natural resources and to monitor environmental changes. This research aims to study the spatial behavior of the Dead Sea through time. To achieve this aim, time series analysis has been performed to track this behavior. For this purpose, fifteen satellite imageries are collected from 1972 to 2013 in addition to 2011-ASTGTM-DEM. Then, the satellite imageries are radiometrically and atmospherically corrected. Geographic Information system and Remote Sensing techniques are used for the spatio-temporal analysis in order to detect changes in the Dead Sea area, shape, water level, and volume. The study shows that the Dead Sea shrinks by 2.9 km2/year while the water level decreases by 0.65 m/year. Consequently, the volume changes by –0.42 km3/year. The study has also concluded that the direction of this shrinkage is from the north, northwest and from the south direction of the northern part due to the nature of the bathymetric slopes. In contrast, no shrinkage is detected from the east direction due to the same reason since the bathymetric slope is so sharp. The use of the Dead Sea water for industrial purposes by both Israel and Jordan is one of the essential factors that affect the area of the Dead Sea. The intensive human water consumption from the Jordan and Yarmouk Rivers for other usages is another main reason of this shrinkage in the area as well.展开更多
Fluorescence lifetime imaging microscopy(FLIM)is increasingly used in biomedicine,material science,chemistry,and other related research fields,because of its advantages of high specificity and sensitivity in monitorin...Fluorescence lifetime imaging microscopy(FLIM)is increasingly used in biomedicine,material science,chemistry,and other related research fields,because of its advantages of high specificity and sensitivity in monitoring cellular microenvironments,studying interaction between proteins,metabolic state,screening drugs and analyzing their efficacy,characterizing novel materials,and diagnosing early cancers.Understandably,there is a large interest in obtaining FLIM data within an acquisition time as short as possible.Consequently,there is currently a technology that advances towards faster and faster FLIM recording.However,the maximum speed of a recording technique is only part of the problerm.The acquisition time of a FLIM image is a complex function of many factors.These include the photon rate that can be obtained from the sample,the amount of information a technique extracts from the decay functions,the fficiency at which it determines fluorescence decay parameters from the recorded photons,the demands for the accuracy of these parameters,the number of pixels,and the lateral and axial resolutions that are obtained in biological materials.Starting from a discussion of the parameters which determine the acquisition time,this review will describe existing and emerging FLIM techniques and data analysis algo-rithms,and analyze their performance and recording speed in biological and biomedical applications.展开更多
The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the co...The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results.展开更多
In principle,the asynchronous measurement-device-independent quantum key distribution(AMDI-QKD)can surpass the key rate capacity without phase tracking and phase locking.However,practical imperfections in sources or d...In principle,the asynchronous measurement-device-independent quantum key distribution(AMDI-QKD)can surpass the key rate capacity without phase tracking and phase locking.However,practical imperfections in sources or detections would dramatically depress its performance.Here,we present an improved model on AMDI-QKD to reduce the influence of these imperfections,including intensity fluctuation,the afterpulse effect,and the dead time of detectors.Furthermore,we carry out corresponding numerical simulations.Simulation results show that,by implementing our present work,it can have more than 100 km longer secure transmission distance and one order of magnitude enhancement in the key generation rate after 320 km compared with the standard method.Moreover,our model can still break the Pirandola–Laurenza–Ottaviani–Banchi(PLOB)bound even under realistic experimental conditions.展开更多
In this paper we present a new projective synchronization scheme, where two chaotic (hyperchaotic) discrete-time systems synchronize for any arbitrary scaling matrix. Specifically, each drive system state synchroniz...In this paper we present a new projective synchronization scheme, where two chaotic (hyperchaotic) discrete-time systems synchronize for any arbitrary scaling matrix. Specifically, each drive system state synchronizes with a linear combination of response system states. The proposed observer-based approach presents some useful features: i) it enables exact synchronization to be achieved in finite time (i.e., dead-beat synchronization); ii) it exploits a scalar synchronizing signal; iii) it can be applied to a wide class of discrete-time chaotic (hyperchaotic) systems; iv) it includes, as a particular case, most of the synchronization types defined so far. An example is reported, which shows in detail that exact synchronization is effectively achieved in finite time, using a scalar synchronizing signal only, for any arbitrary scaling matrix.展开更多
The International Maritime Organization has developed the second-generation intact stability criteria. Thus, damage stability criteria can be established in the future. In order to identity the capsizing probability o...The International Maritime Organization has developed the second-generation intact stability criteria. Thus, damage stability criteria can be established in the future. In order to identity the capsizing probability of damaged ship under dead ship condition, this paper investigates two methods that can be used to research the capsizing probability in time domain, which mainly focus on the nonlinear righting lever GZ curve solution. One method subjects the influence of damaged tanks on the hull shape down to the wind and wave, and the other method is consistent with the real-time calculation of the GZ curve. On the basis of one degree of freedom rolling equation, the solution is Monte Carlo method, and a damaged fishery bureau vessel is taken as a sample ship. In addition, the results of the time-domain capsizing probability under different loading conditions are compared and analyzed. The relation of GM and heeling angle with the capsizing probability is investigated, and its possible reason is analyzed. On the basis of combining the time-domain flooding process with the capsizing probability calculation, this research aims to lay the foundation for the study of capsizing probability in time domain under dead ship condition, as well as provide technical support for capsizing mechanism of dead ship stability and damage stability criteria establishment in waves.展开更多
LLC谐振变换器由于具有良好的软开关特性和电气隔离能力,在近年来被广泛应用于高压、大功率、中/高频电能变换领域。现有的高压器件受开关特性的制约,需要选取较大的死区时间保证电路中开关桥臂的安全可靠工作,从而会对LLC谐振变换器的...LLC谐振变换器由于具有良好的软开关特性和电气隔离能力,在近年来被广泛应用于高压、大功率、中/高频电能变换领域。现有的高压器件受开关特性的制约,需要选取较大的死区时间保证电路中开关桥臂的安全可靠工作,从而会对LLC谐振变换器的软开关实现产生影响。主要研究了大死区时间对LLC谐振变换器软开关特性的影响规律,分别从开关管安全工作、结电容放电和反并联二极管续流3个因素出发,定量推导确保全功率范围内软开关实现的死区设置区间,进而提出死区时间的优化设计方法。最后,搭建了基于6.5 kV/250 A IGBT的150 kW大功率电力电子变压器样机,通过分析和测量不同功率等级下LLC谐振变换器的软开关实现情况,验证所提死区时间设计方法的有效性。展开更多
基金the High Technology Research and Development (863) Program (2003AA517020).
文摘The optimal tracking performance for integrator and dead time plant in the case where plant uncertainty and control energy constraints are to be considered jointly is inrestigated. Firstly, an average cost function of the tracking error and the plant input energy over a class of stochastic model errors are defined. Then, we obtain an internal model controller design method that minimizes the average performance and further studies optimal tracking performance for integrator and dead time plant in the simultaneous presence of plant uncertainty and control energy constraint. The results can be used to evaluate optimal tracking performance and control energy in practical designs.
基金Project supported by the National High Technology Research and Development Program of China (863 Program) (GrantNo. 2009AA01A349)
文摘The estimation of key rate is an important aspect of the quantum key distribution process, especially in the use of dead time. In this paper, we demonstrate a numerical simulation to estimate the average detection probability and the key rate. Using our method, the estimated average detection probability is better than the previous result. Besides, we can easily find the best dead time, especially when considering the impact of after pulse.
基金Project supported by the National Natural Science Foundation of China(No.60676013).
文摘This paper presents a width controller,a dead time controller,a discontinuous current mode(DCM) controller and a frequency skipping modulation(FSM) controller for a high frequency high efficiency buck DC-DC converter. To improve the efficiency over a wide load range,especially at high switching frequency,the dead time controller and width controller are applied to enhance the high load efficiency,while the DCM controller and FSM controller are proposed to increase the light load efficiency.The proposed DC-DC converter controllers have been designed and fabricated in the Chartered 0.35μm CMOS process,and the measured results show that the efficiency of the buck DC-DC converter is above 80%over a wide load current range from 8 to 570 mA,and the peak efficiency is 86%at 10 MHz switching frequency.
基金supported by National Natural Science Foundationof China (No. 60774017 and No. 60874045)
文摘In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.
文摘Developed tools of Remote Sensing and Geographic Information System are rapidly spread in recent years in order to manage natural resources and to monitor environmental changes. This research aims to study the spatial behavior of the Dead Sea through time. To achieve this aim, time series analysis has been performed to track this behavior. For this purpose, fifteen satellite imageries are collected from 1972 to 2013 in addition to 2011-ASTGTM-DEM. Then, the satellite imageries are radiometrically and atmospherically corrected. Geographic Information system and Remote Sensing techniques are used for the spatio-temporal analysis in order to detect changes in the Dead Sea area, shape, water level, and volume. The study shows that the Dead Sea shrinks by 2.9 km2/year while the water level decreases by 0.65 m/year. Consequently, the volume changes by –0.42 km3/year. The study has also concluded that the direction of this shrinkage is from the north, northwest and from the south direction of the northern part due to the nature of the bathymetric slopes. In contrast, no shrinkage is detected from the east direction due to the same reason since the bathymetric slope is so sharp. The use of the Dead Sea water for industrial purposes by both Israel and Jordan is one of the essential factors that affect the area of the Dead Sea. The intensive human water consumption from the Jordan and Yarmouk Rivers for other usages is another main reason of this shrinkage in the area as well.
基金support from the National Key R&D Program of China(2017YFA0700500)National Natural Science Foundation of China(61775144/61525503/61620106016/61835009/81727804)+2 种基金(Key)Project of Department of Education of Guangdong Province(2015KGJHZ002/2016KCXTD007)Guangdong Natural Science Foundation(2014A030312008,2017A030310132,2018A030313362)Shenzhen Basic Research Project(JCYJ20170818144012025/JCYJ20170818141701667/JCYJ20170412105003520/JCYJ20150930104948169).
文摘Fluorescence lifetime imaging microscopy(FLIM)is increasingly used in biomedicine,material science,chemistry,and other related research fields,because of its advantages of high specificity and sensitivity in monitoring cellular microenvironments,studying interaction between proteins,metabolic state,screening drugs and analyzing their efficacy,characterizing novel materials,and diagnosing early cancers.Understandably,there is a large interest in obtaining FLIM data within an acquisition time as short as possible.Consequently,there is currently a technology that advances towards faster and faster FLIM recording.However,the maximum speed of a recording technique is only part of the problerm.The acquisition time of a FLIM image is a complex function of many factors.These include the photon rate that can be obtained from the sample,the amount of information a technique extracts from the decay functions,the fficiency at which it determines fluorescence decay parameters from the recorded photons,the demands for the accuracy of these parameters,the number of pixels,and the lateral and axial resolutions that are obtained in biological materials.Starting from a discussion of the parameters which determine the acquisition time,this review will describe existing and emerging FLIM techniques and data analysis algo-rithms,and analyze their performance and recording speed in biological and biomedical applications.
基金Supported by National Basic Research Program of China (973 Program) (2009CB320604), National Natural Science Foundation of China (60974043, 60904010), the Funds for Creative Research Groups of China (60821063), the 111 Project (B08015), the Project of Technology Plan of Fujian Province (2009H0033), and the Project of Technology Plan of Quanzhou (2007G6)
文摘The aim of this study is to evaluate the uncertainty of 2πα and 2πβ surface emission rates using the windowless multiwire proportional counter method.This study used the Monte Carlo method (MCM) to validate the conventional Guide to the Expression of Uncertainty in Measurement (GUM) method.A dead time measurement model for the two-source method was established based on the characteristics of a single-channel measurement system,and the voltage threshold correction factor measurement function was indirectly obtained by fitting the threshold correction curve.The uncertainty in the surface emission rate was calculated using the GUM method and the law of propagation of uncertainty.The MCM provided clear definitions for each input quantity and its uncertainty distribution,and the simulation training was realized with a complete and complex mathematical model.The results of the surface emission rate uncertainty evaluation for four radioactive plane sources using both methods showed the uncertainty’s consistency E_(n)<0.070 for the comparison of each source,and the uncertainty results of the GUM were all lower than those of the MCM.However,the MCM has a more objective evaluation process and can serve as a validation tool for GUM results.
基金Project supported by Natural Science Foundation of Jiangsu Province(Grant Nos.BE2022071 and BK20192001)the National Natural Science Foundation of China(Grant Nos.12074194,62101285,62471248,and 12104240)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX220954).
文摘In principle,the asynchronous measurement-device-independent quantum key distribution(AMDI-QKD)can surpass the key rate capacity without phase tracking and phase locking.However,practical imperfections in sources or detections would dramatically depress its performance.Here,we present an improved model on AMDI-QKD to reduce the influence of these imperfections,including intensity fluctuation,the afterpulse effect,and the dead time of detectors.Furthermore,we carry out corresponding numerical simulations.Simulation results show that,by implementing our present work,it can have more than 100 km longer secure transmission distance and one order of magnitude enhancement in the key generation rate after 320 km compared with the standard method.Moreover,our model can still break the Pirandola–Laurenza–Ottaviani–Banchi(PLOB)bound even under realistic experimental conditions.
文摘In this paper we present a new projective synchronization scheme, where two chaotic (hyperchaotic) discrete-time systems synchronize for any arbitrary scaling matrix. Specifically, each drive system state synchronizes with a linear combination of response system states. The proposed observer-based approach presents some useful features: i) it enables exact synchronization to be achieved in finite time (i.e., dead-beat synchronization); ii) it exploits a scalar synchronizing signal; iii) it can be applied to a wide class of discrete-time chaotic (hyperchaotic) systems; iv) it includes, as a particular case, most of the synchronization types defined so far. An example is reported, which shows in detail that exact synchronization is effectively achieved in finite time, using a scalar synchronizing signal only, for any arbitrary scaling matrix.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51509124 and 51681340360)the Hi-Tech Ship Project of the Ministry of Industry and Technology(Grant No.2016[26])
文摘The International Maritime Organization has developed the second-generation intact stability criteria. Thus, damage stability criteria can be established in the future. In order to identity the capsizing probability of damaged ship under dead ship condition, this paper investigates two methods that can be used to research the capsizing probability in time domain, which mainly focus on the nonlinear righting lever GZ curve solution. One method subjects the influence of damaged tanks on the hull shape down to the wind and wave, and the other method is consistent with the real-time calculation of the GZ curve. On the basis of one degree of freedom rolling equation, the solution is Monte Carlo method, and a damaged fishery bureau vessel is taken as a sample ship. In addition, the results of the time-domain capsizing probability under different loading conditions are compared and analyzed. The relation of GM and heeling angle with the capsizing probability is investigated, and its possible reason is analyzed. On the basis of combining the time-domain flooding process with the capsizing probability calculation, this research aims to lay the foundation for the study of capsizing probability in time domain under dead ship condition, as well as provide technical support for capsizing mechanism of dead ship stability and damage stability criteria establishment in waves.
文摘LLC谐振变换器由于具有良好的软开关特性和电气隔离能力,在近年来被广泛应用于高压、大功率、中/高频电能变换领域。现有的高压器件受开关特性的制约,需要选取较大的死区时间保证电路中开关桥臂的安全可靠工作,从而会对LLC谐振变换器的软开关实现产生影响。主要研究了大死区时间对LLC谐振变换器软开关特性的影响规律,分别从开关管安全工作、结电容放电和反并联二极管续流3个因素出发,定量推导确保全功率范围内软开关实现的死区设置区间,进而提出死区时间的优化设计方法。最后,搭建了基于6.5 kV/250 A IGBT的150 kW大功率电力电子变压器样机,通过分析和测量不同功率等级下LLC谐振变换器的软开关实现情况,验证所提死区时间设计方法的有效性。