In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The ...In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.展开更多
In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approxi...In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approximate the unknown nonlinear functions.Then,by combining the backstepping technique and the appropriate Lyapunov-Krasovskii functionals with the dynamic surface control approach,the adaptive fuzzy tracking controller is designed.Our development is able to eliminate the problem of 'explosion of complexity' inherent in the existing backstepping-based methods.The main advantages of our approach include:1) for the n-th-order nonlinear systems,only one parameter needs to be adjusted online in the controller design procedure,which reduces the computation burden greatly.Moreover,the input of the dead-zone with only one adjusted parameter is much simpler than the ones in the existing results;2) the proposed control scheme does not need to know the time delays and their upper bounds.It is proven that the proposed design method is able to guarantee that all the signals in the closed-loop system are bounded and the tracking error is smaller than a prescribed error bound,Finally,simulation results demonstrate the effectiveness of the proposed approach.展开更多
基金supported by National Natural Science Foundationof China (No. 60774017 and No. 60874045)
文摘In this paper, adaptive variable structure neural control is presented for a class of uncertain multi-input multi-output (MIMO) nonlinear systems with state time-varying delays and unknown nonlinear dead-zones. The unknown time-varying delay uncer- tainties are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. The approach removes the assumption of linear function outside the deadband without necessarily constructing a dead-zone inverse as an added contribution. By utilizing the integral-type Lyapunov function and introducing an adaptive compensation term for the upper bound of the residual and optimal approximation error as well as the dead-zone disturbance, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded. In addition, a modified adaptive control algorithm is given in order to avoid the high-frequency chattering phenomenon. Simulation results demonstrate the effectiveness of the approach.
基金Supported by National Basic Research Program of China (973 Program) (2009CB320604), National Natural Science Foundation of China (60974043, 60904010), the Funds for Creative Research Groups of China (60821063), the 111 Project (B08015), the Project of Technology Plan of Fujian Province (2009H0033), and the Project of Technology Plan of Quanzhou (2007G6)
基金supported by National Natural Science Foundation of China (Nos. 60974139 and 60804021)Fundamental Research Funds for the Central Universities (No. 72103676)
文摘In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approximate the unknown nonlinear functions.Then,by combining the backstepping technique and the appropriate Lyapunov-Krasovskii functionals with the dynamic surface control approach,the adaptive fuzzy tracking controller is designed.Our development is able to eliminate the problem of 'explosion of complexity' inherent in the existing backstepping-based methods.The main advantages of our approach include:1) for the n-th-order nonlinear systems,only one parameter needs to be adjusted online in the controller design procedure,which reduces the computation burden greatly.Moreover,the input of the dead-zone with only one adjusted parameter is much simpler than the ones in the existing results;2) the proposed control scheme does not need to know the time delays and their upper bounds.It is proven that the proposed design method is able to guarantee that all the signals in the closed-loop system are bounded and the tracking error is smaller than a prescribed error bound,Finally,simulation results demonstrate the effectiveness of the proposed approach.