针对传统蚁群算法在移动机器人路径规划中存在的收敛速度慢、收敛路径质量低、死锁以及动态避障能力差的问题,本文提出基于改进避障策略和双优化蚁群算法(Double optimization ant colony algorithm,DOACO)的路径规划方法。首先,设计新...针对传统蚁群算法在移动机器人路径规划中存在的收敛速度慢、收敛路径质量低、死锁以及动态避障能力差的问题,本文提出基于改进避障策略和双优化蚁群算法(Double optimization ant colony algorithm,DOACO)的路径规划方法。首先,设计新的概率转移函数并对函数中的各分量权重进行自适应调整,以优化算法的收敛速度;然后,利用碰撞检测策略对路径进行再优化,进一步提高算法的性能;最后,针对常规避障策略避障能力差、实时性不足等问题,提出避障行为与局部路径重规划相结合的避障策略。实验结果表明,DOACO算法相对于传统的蚁群算法,不仅能规划出更优的路径,收敛速度也更快,而且新的避障策略也可以有效地应对多种碰撞情况。展开更多
In this paper, the structure of infeasible solutions to Job Shop Scheduling Problem (JSSP) is quantitatively analyzed, and a necessary and sufficient condition of the deadlock for JSSP is also given. For a simple JSSP...In this paper, the structure of infeasible solutions to Job Shop Scheduling Problem (JSSP) is quantitatively analyzed, and a necessary and sufficient condition of the deadlock for JSSP is also given. For a simple JSSP with 2 machines and N jobs, a formula for calculating the infeasible solutions is proposed, which shows that the infeasible solution possesses the majority of search space and only those heuristic algorithms which do not produce infeasible solutions are valid.展开更多
文摘针对传统蚁群算法在移动机器人路径规划中存在的收敛速度慢、收敛路径质量低、死锁以及动态避障能力差的问题,本文提出基于改进避障策略和双优化蚁群算法(Double optimization ant colony algorithm,DOACO)的路径规划方法。首先,设计新的概率转移函数并对函数中的各分量权重进行自适应调整,以优化算法的收敛速度;然后,利用碰撞检测策略对路径进行再优化,进一步提高算法的性能;最后,针对常规避障策略避障能力差、实时性不足等问题,提出避障行为与局部路径重规划相结合的避障策略。实验结果表明,DOACO算法相对于传统的蚁群算法,不仅能规划出更优的路径,收敛速度也更快,而且新的避障策略也可以有效地应对多种碰撞情况。
基金Supported by The National Natural Science Foundation of China ( No.794 3 0 0 2 2 )
文摘In this paper, the structure of infeasible solutions to Job Shop Scheduling Problem (JSSP) is quantitatively analyzed, and a necessary and sufficient condition of the deadlock for JSSP is also given. For a simple JSSP with 2 machines and N jobs, a formula for calculating the infeasible solutions is proposed, which shows that the infeasible solution possesses the majority of search space and only those heuristic algorithms which do not produce infeasible solutions are valid.