The stability of a heat-conducting flow due to the pumping of a fluid around the annulus of horizontal porous cylinders is studied. The basic flow is under the action of radial flow and a radial temperature gradient. ...The stability of a heat-conducting flow due to the pumping of a fluid around the annulus of horizontal porous cylinders is studied. The basic flow is under the action of radial flow and a radial temperature gradient. The objects of investigations are different regimes and bifurcations which may arise in this flow.展开更多
Chaotic mixing in a curved-square channel flow is studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient is imposed in the ...Chaotic mixing in a curved-square channel flow is studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient is imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flows. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In the present paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental and numerical results. We produced a micromixer model of the curved channel several centimeters long with square cross section of a few millimeters side. The secondary flow was measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. We also performed three-dimensional numerical simulations for the exactly same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is achieved for the case of De ≤ 0.1Tr, and that mixing efficiency changes according to the difference in inflow conditions. The flow is studied both experimentally and numerically, and both results agree with each other very well.展开更多
Chaotic mixing in three different types of curved-rectangular channels flow has been studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a p...Chaotic mixing in three different types of curved-rectangular channels flow has been studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient are imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flow. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In this paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental results and numerical ones. We produced three micromixer models of the curved channel, several centimeters long, with rectangular cross-section of a few millimeters side. The secondary flow is measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. Also we performed three-dimensional numerical simulations with the open source CFD solver, OpenFOAM, for the same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is obtained in the case of De ≤ 0.1 Tr, and it becomes more remarkable when the aspect ratio tends to large. And it is found that the mixing efficiency changes according to the aspect ratio and inflow condition.展开更多
Micromixing efficiency is an important parameter for evaluating the multiphase mass transfer performance and reaction efficiency of microreactors.In this work,the novel curved capillary reactor with different shapes w...Micromixing efficiency is an important parameter for evaluating the multiphase mass transfer performance and reaction efficiency of microreactors.In this work,the novel curved capillary reactor with different shapes was designed to generate Dean flow,which was used to enhance the liquid-liquid micromixing performance.The Villermaux-Dushman probe reaction was employed to characterize the micromixing performance in different curved capillary microreactors.The effects of experiment parameters such as liquid flow rate,inner diameter,tube length,and curve diameter on micromixing performance were systematically investigated.Under the optimal conditions,the minimum value of the segmentation factor XS was 0.008.It was worth noting that at the low Reynolds number(Re<30),the change of curved shape on the capillary microreactor can significantly improve the micromixing performance with XS reduced by 37.5%.Further,the correlations of segment index XS with dimensionless factor such as Reynolds number or Dean number were developed,which can be used to predict the liquid-liquid micromixing performance in capillary microreactors.展开更多
In this article,a theoretical analysis on flow in a curvilinear horizontal coaxial cylinder with permeable walls has been proposed.Specifically,the transient impact of an oscillating pressure gradient has been taken i...In this article,a theoretical analysis on flow in a curvilinear horizontal coaxial cylinder with permeable walls has been proposed.Specifically,the transient impact of an oscillating pressure gradient has been taken into account.The non-linear time-dependent partial differential equation accountable for the flow has been transformed using the classical Laplace transform technique.Exact solution of the momentum equation has been obtained in Laplace domain.Due to the intricacy of the Laplace domain solutions,a numerical inversing technique which is established upon the Riemann-sum approximation(RSA)has been utilized to transform the Laplace domain solutions to time domain.Findings reveal that the outcome of suction on the porous walls and boosting the frequency of oscillation renders skin frictions on both walls of the cylinder less effective.The instability of the Dean vortices in the annular gap can be suppressed by amplifying the frequency of oscillating pressure gradient while time is maintained.展开更多
A depth understanding of fluid flow past a curved duct having rectangular cross-section with different aspect ratios(l)are essential for various engineering applications such as in chemical,mechanical,biomechanical an...A depth understanding of fluid flow past a curved duct having rectangular cross-section with different aspect ratios(l)are essential for various engineering applications such as in chemical,mechanical,biomechanical and bio-medical engineering.So highly ambitious researchers have given significant attention to study new characteristics of fluid flow in a curved duct.The flow characterization in the rectangular duct has been studied over a wide range of numerical and selective experimental studies.However,proper knowledge with the effects of Coriolis force for different aspect ratios is important for better understanding of the transitional behaviour and the subsequent heat generation,which is required to improve further.The purpose of this study is to reveal insight into the transitional flow pattern and heat transfer in a curved rectangular domain.The Navier-Stokes equations are solved using the spectral method,while the Crank-Nicolson method is used to solve the energy equation.An in-house FORTRAN code is developed to get the numerical solution.For post-processing purposes,Tecplot-360 and Ghost-script tools are used.The present study exposes development of Dean vortices that affect heat generation as well as thermal enhancement in the flow with underlying the flow controlling parameters,the Dean number(Dn),the Grashof number(Gr)and the Taylor number(Tr).Time-dependent results followed by phase spaces show that transient flow undergoes in the scenario‘chaotic→multi-periodic→periodic→steady-state’generating 2-to 8-vortices for the periodic/multi-periodic flow at 2000≤Tr≤2205 for l=2,whereas similar sort of flow is observed in the range of 3100≤Tr≤3195 for l=3.More complicated 4-to 13-vortex solutions are obtained for the chaotic flow regime at l=2 in the range of 0≤Tr<2200 and at l=3 in the range of 0≤Tr<3100.The chaotic flow that occurs at the certain range of Tr proficiently intensifies the heat transfer than the unperturbed,periodic or multi-periodic flow.The overall investigation reveals that in the rotating duct,the temperature-influenced buoyancy compulsion and centrifugal-coriolis joint forces are dominant,influencing the characteristic of the fluid and thus optimizing the transfer of heat.The present investigation will contribute to enhancing the understanding of fluid flow and heat transfer of internal heating/cooling/gas turbines,electric generators,biological systems,and some separation processes.展开更多
将弯道层流流动形成的Dean涡产生的微粒分离原理运用于污水的2级处理,通过研发水动力分离处理装置,采用投加适量絮凝剂后的某河水进行实验,研究在流道中不同体积流量和絮凝剂含量下装置的分离效果。结果表明:当进水粒径在94.55~161.4μ...将弯道层流流动形成的Dean涡产生的微粒分离原理运用于污水的2级处理,通过研发水动力分离处理装置,采用投加适量絮凝剂后的某河水进行实验,研究在流道中不同体积流量和絮凝剂含量下装置的分离效果。结果表明:当进水粒径在94.55~161.4μm时,分离效果最好;当体积流量小于600 m L/min时,体积流量越大则分离效果越高,而体积流量大于600 m L/min后,分离效果基本不变;在体积流量为600 m L/min时对浊度的去除率在90%以上,对TP和SS去除率分别在85%和50%以上,经装置分离后的清水的浊度大致为1 NTU;在体积流量为600 m L/min时,絮凝剂Fe Cl3的适宜投加质量浓度为21 mg/L。展开更多
Combined effects of centrifugal and coriolis instability of the flow through a rotating curved duct with rectangular cross section have been studied numerically by using a spectral method, and covering a wide range of...Combined effects of centrifugal and coriolis instability of the flow through a rotating curved duct with rectangular cross section have been studied numerically by using a spectral method, and covering a wide range of the Taylor number ?for a constant Dean number. The rotation of the duct about the center of curvature is imposed in the positive direction, and the effects of rotation (Coriolis force) on the flow characteristics are investigated. As a result, multiple branches of asymmetric steady solutions with two-, three-and multi-vortex solutions are obtained. To investigate the non-linear behavior of the unsteady solutions, time evolution calculations as well as power spectrum of the unsteady solutions are performed, and it is found that the unsteady flow undergoes through various flow instabilities in the scenario “chaotic?→ multi-periodic?→ periodic?→ steady-state”, if Tr is increased in the positive direction. The present results show the characteristics of both the secondary flow and axial flow distribution in the flow.展开更多
The effects of the aspect ratio on unsteady solutions through the curved duct flow are studied numerically by a spectral based computational procedure with a temperature gradient between the vertical sidewalls for the...The effects of the aspect ratio on unsteady solutions through the curved duct flow are studied numerically by a spectral based computational procedure with a temperature gradient between the vertical sidewalls for the Grashof number 100 ≤ Gr ≤ 2 000. The outer wall of the duct is heated while the inner wall is cooled and the top and bottom walls are adiabatic. In this paper, unsteady solutions are calculated by the time history analysis of the Nusselt number for the Dean numbers Dn = 100 and Dn = 500 and the aspect ratios 1≤γ≤ 3. Water is taken as a working fluid (Pr =7.0). It is found that at Dn = 100, there appears a steady-state solution for small or large Gr. For moderate Gr, however, the steady-state solution turns into the periodic solution if γ is increased. For Dn = 500, on the other hand, it is analyzed that the steady-state solution turns into the chaotic solution for small and large Gr for any γ lying in the range. For moderate Gr at Dn = 500, however, the steady-state flow turns into the chaotic flow through the periodic oscillating flow if the aspect ratio is increased.展开更多
文摘The stability of a heat-conducting flow due to the pumping of a fluid around the annulus of horizontal porous cylinders is studied. The basic flow is under the action of radial flow and a radial temperature gradient. The objects of investigations are different regimes and bifurcations which may arise in this flow.
文摘Chaotic mixing in a curved-square channel flow is studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient is imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flows. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In the present paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental and numerical results. We produced a micromixer model of the curved channel several centimeters long with square cross section of a few millimeters side. The secondary flow was measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. We also performed three-dimensional numerical simulations for the exactly same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is achieved for the case of De ≤ 0.1Tr, and that mixing efficiency changes according to the difference in inflow conditions. The flow is studied both experimentally and numerically, and both results agree with each other very well.
文摘Chaotic mixing in three different types of curved-rectangular channels flow has been studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient are imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flow. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In this paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental results and numerical ones. We produced three micromixer models of the curved channel, several centimeters long, with rectangular cross-section of a few millimeters side. The secondary flow is measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. Also we performed three-dimensional numerical simulations with the open source CFD solver, OpenFOAM, for the same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is obtained in the case of De ≤ 0.1 Tr, and it becomes more remarkable when the aspect ratio tends to large. And it is found that the mixing efficiency changes according to the aspect ratio and inflow condition.
基金supports of National Natural Science Foundation of China(22308057)Outstanding Talent Introduction Funds from Fuzhou University(0040-511175)Fuzhou University Testing Fund of precious apparatus(2023T003).
文摘Micromixing efficiency is an important parameter for evaluating the multiphase mass transfer performance and reaction efficiency of microreactors.In this work,the novel curved capillary reactor with different shapes was designed to generate Dean flow,which was used to enhance the liquid-liquid micromixing performance.The Villermaux-Dushman probe reaction was employed to characterize the micromixing performance in different curved capillary microreactors.The effects of experiment parameters such as liquid flow rate,inner diameter,tube length,and curve diameter on micromixing performance were systematically investigated.Under the optimal conditions,the minimum value of the segmentation factor XS was 0.008.It was worth noting that at the low Reynolds number(Re<30),the change of curved shape on the capillary microreactor can significantly improve the micromixing performance with XS reduced by 37.5%.Further,the correlations of segment index XS with dimensionless factor such as Reynolds number or Dean number were developed,which can be used to predict the liquid-liquid micromixing performance in capillary microreactors.
文摘In this article,a theoretical analysis on flow in a curvilinear horizontal coaxial cylinder with permeable walls has been proposed.Specifically,the transient impact of an oscillating pressure gradient has been taken into account.The non-linear time-dependent partial differential equation accountable for the flow has been transformed using the classical Laplace transform technique.Exact solution of the momentum equation has been obtained in Laplace domain.Due to the intricacy of the Laplace domain solutions,a numerical inversing technique which is established upon the Riemann-sum approximation(RSA)has been utilized to transform the Laplace domain solutions to time domain.Findings reveal that the outcome of suction on the porous walls and boosting the frequency of oscillation renders skin frictions on both walls of the cylinder less effective.The instability of the Dean vortices in the annular gap can be suppressed by amplifying the frequency of oscillating pressure gradient while time is maintained.
文摘A depth understanding of fluid flow past a curved duct having rectangular cross-section with different aspect ratios(l)are essential for various engineering applications such as in chemical,mechanical,biomechanical and bio-medical engineering.So highly ambitious researchers have given significant attention to study new characteristics of fluid flow in a curved duct.The flow characterization in the rectangular duct has been studied over a wide range of numerical and selective experimental studies.However,proper knowledge with the effects of Coriolis force for different aspect ratios is important for better understanding of the transitional behaviour and the subsequent heat generation,which is required to improve further.The purpose of this study is to reveal insight into the transitional flow pattern and heat transfer in a curved rectangular domain.The Navier-Stokes equations are solved using the spectral method,while the Crank-Nicolson method is used to solve the energy equation.An in-house FORTRAN code is developed to get the numerical solution.For post-processing purposes,Tecplot-360 and Ghost-script tools are used.The present study exposes development of Dean vortices that affect heat generation as well as thermal enhancement in the flow with underlying the flow controlling parameters,the Dean number(Dn),the Grashof number(Gr)and the Taylor number(Tr).Time-dependent results followed by phase spaces show that transient flow undergoes in the scenario‘chaotic→multi-periodic→periodic→steady-state’generating 2-to 8-vortices for the periodic/multi-periodic flow at 2000≤Tr≤2205 for l=2,whereas similar sort of flow is observed in the range of 3100≤Tr≤3195 for l=3.More complicated 4-to 13-vortex solutions are obtained for the chaotic flow regime at l=2 in the range of 0≤Tr<2200 and at l=3 in the range of 0≤Tr<3100.The chaotic flow that occurs at the certain range of Tr proficiently intensifies the heat transfer than the unperturbed,periodic or multi-periodic flow.The overall investigation reveals that in the rotating duct,the temperature-influenced buoyancy compulsion and centrifugal-coriolis joint forces are dominant,influencing the characteristic of the fluid and thus optimizing the transfer of heat.The present investigation will contribute to enhancing the understanding of fluid flow and heat transfer of internal heating/cooling/gas turbines,electric generators,biological systems,and some separation processes.
文摘将弯道层流流动形成的Dean涡产生的微粒分离原理运用于污水的2级处理,通过研发水动力分离处理装置,采用投加适量絮凝剂后的某河水进行实验,研究在流道中不同体积流量和絮凝剂含量下装置的分离效果。结果表明:当进水粒径在94.55~161.4μm时,分离效果最好;当体积流量小于600 m L/min时,体积流量越大则分离效果越高,而体积流量大于600 m L/min后,分离效果基本不变;在体积流量为600 m L/min时对浊度的去除率在90%以上,对TP和SS去除率分别在85%和50%以上,经装置分离后的清水的浊度大致为1 NTU;在体积流量为600 m L/min时,絮凝剂Fe Cl3的适宜投加质量浓度为21 mg/L。
文摘Combined effects of centrifugal and coriolis instability of the flow through a rotating curved duct with rectangular cross section have been studied numerically by using a spectral method, and covering a wide range of the Taylor number ?for a constant Dean number. The rotation of the duct about the center of curvature is imposed in the positive direction, and the effects of rotation (Coriolis force) on the flow characteristics are investigated. As a result, multiple branches of asymmetric steady solutions with two-, three-and multi-vortex solutions are obtained. To investigate the non-linear behavior of the unsteady solutions, time evolution calculations as well as power spectrum of the unsteady solutions are performed, and it is found that the unsteady flow undergoes through various flow instabilities in the scenario “chaotic?→ multi-periodic?→ periodic?→ steady-state”, if Tr is increased in the positive direction. The present results show the characteristics of both the secondary flow and axial flow distribution in the flow.
文摘The effects of the aspect ratio on unsteady solutions through the curved duct flow are studied numerically by a spectral based computational procedure with a temperature gradient between the vertical sidewalls for the Grashof number 100 ≤ Gr ≤ 2 000. The outer wall of the duct is heated while the inner wall is cooled and the top and bottom walls are adiabatic. In this paper, unsteady solutions are calculated by the time history analysis of the Nusselt number for the Dean numbers Dn = 100 and Dn = 500 and the aspect ratios 1≤γ≤ 3. Water is taken as a working fluid (Pr =7.0). It is found that at Dn = 100, there appears a steady-state solution for small or large Gr. For moderate Gr, however, the steady-state solution turns into the periodic solution if γ is increased. For Dn = 500, on the other hand, it is analyzed that the steady-state solution turns into the chaotic solution for small and large Gr for any γ lying in the range. For moderate Gr at Dn = 500, however, the steady-state flow turns into the chaotic flow through the periodic oscillating flow if the aspect ratio is increased.