期刊文献+
共找到57篇文章
< 1 2 3 >
每页显示 20 50 100
Elastic Wave Scattering From a Partially Debonded Elastic Cylindrical Inclusion 被引量:1
1
作者 汪越胜 王铎 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 1994年第1期71-79,共9页
ElasticWaveScatteringFromaPartiallyDebondedElasticCylindricalInclusionWANGYueshengWANGDuo(汪越胜,王铎)(Dept.ofAst... ElasticWaveScatteringFromaPartiallyDebondedElasticCylindricalInclusionWANGYueshengWANGDuo(汪越胜,王铎)(Dept.ofAstronauticsandMecha... 展开更多
关键词 ss: ELASTIC WAVE SCATTERING INCLUSION DEBONDING interface crack
下载PDF
DYNAMIC ANALYSIS OF A BURIED RIGID ELLIPTIC CYLINDER PARTIALLY DEBONDED FROM SURROUNDING MATRIX UNDER SHEAR WAVES 被引量:1
2
作者 Wang Yuesheng Wang Duo, Department of Astronautics and Mechanics, Harbin Institute of Technology, Harbin 150001, P. R. China 《Acta Mechanica Solida Sinica》 SCIE EI 1995年第1期51-63,共13页
This paper investigates the dynamic behavior of a buried rigid elliptic cylinder partially debonded from surrounding matrix under the action of anti-plane shear waves (SH waves). The debonding region is modeled as an ... This paper investigates the dynamic behavior of a buried rigid elliptic cylinder partially debonded from surrounding matrix under the action of anti-plane shear waves (SH waves). The debonding region is modeled as an elliptic arc-shaped interface crack with non-contacting faces. By using the wave function (Mathieu function) expansion method and introducing the dislocation density function as an unknown variable, the problem is reduced to a singular integral equation which is solved numerically to calculate the near and far fields of the problem. The resonance of the structure and the effects of various parameters on the resonance are discussed. 展开更多
关键词 elastic wave scattering interface debonding interface crack wave function singular integral equation
下载PDF
ANALYSIS OF A PARTIALLY DEBONDED ELLIPTIC INHOMOGENEITY IN PIEZOELECTRIC MATERIALS
3
作者 仲政 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第4期445-457,共13页
A generalized solution was obtained for the partially debonded elliptic inhomogeneity problem in piezoelectric materials under antiplane shear and inplane electric loading using the complex variable method. It was ass... A generalized solution was obtained for the partially debonded elliptic inhomogeneity problem in piezoelectric materials under antiplane shear and inplane electric loading using the complex variable method. It was assumed that the interfacial debonding induced an electrically impermeable crack at the interface. The principle of conformal transformation and analytical continuation were employed to reduce the formulation into two Riemann-Hilbert problems. This enabled the determination of the complex potentials in the inhomogeneity and the matrix by means of series of expressions. The resulting solution was then used to obtain the electroelastic fields and the energy release rate involving the debonding at the inhomogeneity-matrix interface. The validity and versatility of the current general solution have been demonstrated through some specific examples such as the problems of perfectly bonded elliptic inhomogeneity, totally debonded elliptic inhomogeneity, partially debonded rigid and conducting elliptic inhomogeneity, and partially debonded circular inhomogeneity. 展开更多
关键词 piezoelectric material elliptic inhomogeneity DEBONDING energy release rate
下载PDF
A Comparative Study on the Post-Buckling Behavior of Reinforced Thermoplastic Pipes(RTPs)Under External Pressure Considering Progressive Failure 被引量:1
4
作者 DING Xin-dong WANG Shu-qing +1 位作者 LIU Wen-cheng YE Xiao-han 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期233-246,共14页
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ... The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed. 展开更多
关键词 reinforced thermoplastic pipes post-buckling behavior progressive failure of composites DEBONDING initial ovality
下载PDF
Effect of neutral polymeric bonding agent on tensile mechanical properties and damage evolution of NEPE propellant
5
作者 M.Wubuliaisan Yanqing Wu +3 位作者 Xiao Hou Kun Yang Hongzheng Duan Xinmei Yin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期357-367,共11页
Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of ne... Introducing Neutral Polymeric bonding agents(NPBA) into the Nitrate Ester Plasticized Polyether(NEPE)propellant could improve the adhesion between filler/matrix interface, thereby contributing to the development of new generations of the NEPE propellant with better mechanical properties. Therefore,understanding the effects of NPBA on the deformation and damage evolution of the NEPE propellant is fundamental to material design and applications. This paper studies the uniaxial tensile and stress relaxation responses of the NEPE propellant with different amounts of NPBA. The damage evolution in terms of interface debonding is further investigated using a cohesive-zone model(CZM). Experimental results show that the initial modulus and strength of the NEPE propellant increase with the increasing amount of NPBA while the elongation decreases. Meanwhile, the relaxation rate slows down and a higher long-term equilibrium modulus is reached. Experimental and numerical analyses indicate that interface debonding and crack propagation along filler-matrix interface are the dominant damage mechanism for the samples with a low amount of NPBA, while damage localization and crack advancement through the matrix are predominant for the ones with a high amount of NPBA. Finally, crosslinking density tests and simulation results also show that the effect of the bonding agent is interfacial rather than due to the overall crosslinking density change of the binder. 展开更多
关键词 Solid propellant Bonding agent Mechanical properties Damage evolution Cohesive-zone model Interface debonding
下载PDF
Parametric study on contact sensors for MASW measurement-based interfacial debonding detection for SCCS
6
作者 Chen Hongbing Pang Xin +3 位作者 Gan Shiyu Li Yuanyuan Gokarna Chalise Nie Xin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期331-344,共14页
Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding sta... Steel-concrete composite structures(SCCS)have been widely used as primary load-bearing components in large-scale civil infrastructures.As the basis of the co-working ability of steel plate and concrete,the bonding status plays an essential role in guaranteeing the structural performance of SCCS.Accordingly,efficient non-destructive testing(NDT)on interfacial debondings in SCCS has become a prominent research area.Multi-channel analysis of surface waves(MASW)has been validated as an effective NDT technique for interfacial debonding detection for SCCS.However,the feasibility of MASW must be validated using experimental measurements.This study establishes a high-frequency data synchronous acquisition system with 32 channels to perform comparative verification experiments in depth.First,the current sensing approaches for high-frequency vibration and stress waves are summarized.Secondly,three types of contact sensors,namely,piezoelectric lead-zirconate-titanate(PZT)patches,accelerometers,and ultrasonic transducers,are selected for MASW measurement.Then,the selection and optimization of the force hammer head are performed.Comparative experiments are carried out for the optimal selection of ultrasonic transducers,PZT patches,and accelerometers for MASW measurement.In addition,the influence of different pasting methods on the output signal of the sensor array is discussed.Experimental results indicate that optimized PZT patches,acceleration sensors,and ultrasonic transducers can provide efficient data acquisition for MASW-based non-destructive experiments.The research findings in this study lay a solid foundation for analyzing the recognition accuracy of contact MASW measurement using different sensor arrays. 展开更多
关键词 steel-concrete composite structures(SCCS) interface debonding detection multi-channel analysis of surface waves(MASW) sensor selection comparative experimental study
下载PDF
A rate-dependent constitutive model for saturated frozen soil considering local breakage mechanism 被引量:1
7
作者 Pan Wang Enlong Liu +1 位作者 Bin Zhi Bingtang Song 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2458-2474,共17页
A rate-dependent constitutive model for saturated frozen soil is vital in frozen soil mechanics,especially when simultaneously describing the nonlinearity,dilatancy and strain-softening characteristics.The distributio... A rate-dependent constitutive model for saturated frozen soil is vital in frozen soil mechanics,especially when simultaneously describing the nonlinearity,dilatancy and strain-softening characteristics.The distribution of the non-uniform strain rate of saturated frozen soil at the meso-scale due to the local icecementation breakage is described by a newly binary-medium-based homogenization equation.Based on the field-equation-based approach of the meso-mechanics theory,the interaction expression of the strain rate at macro-and meso-scale is derived,which can give the strain rate concentration tensor at different crushed degrees.With the thermodynamics and empirical assumption,a breakage ratio in the rate-dependent form is determined.This overcomes the limitations of the existing binary-medium-based models that are difficult to simulate rate-dependent mechanical response.Based on these assumptions,a newly binary-medium-based rate-dependent model is proposed considering both the ice bond breakage and material composition characteristics of saturated frozen soil.The proposed constitutive model has been validated by the test results on frozen soils with different temperatures and strain rates. 展开更多
关键词 Binary-medium-based model Rate-dependency Frozen soil Grain debonding effect Multi-scale constitutive model
下载PDF
Enhancing the elastoplastic damage constitutive model for clayey rocks: Incorporating anisotropy, saturation, time-dependent, and debonding effects
8
作者 Jueliang Chen Siyu Liu +2 位作者 Wanqing Shen Jianfu Shao Minh-Ngoc Vu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2291-2312,共22页
This paper introduced a novel microstructure-based constitutive model designed to comprehensively characterize the intricate mechanical behavior of anisotropic clay rocks under the influence of water saturation.The pr... This paper introduced a novel microstructure-based constitutive model designed to comprehensively characterize the intricate mechanical behavior of anisotropic clay rocks under the influence of water saturation.The proposed model encompasses elastoplastic deformation,time-dependent behavior,and induced damage.A two-step homogenization process incorporates mineral compositions and porosity to determine the macroscopic elastic tensor and plastic yield criterion.The model also considers interfacial debonding between the matrix and inclusions to capture rock damage.The application of the proposed model is demonstrated through an analysis of Callovo-Oxfordian clayey rocks,specifically in the context of radioactive waste disposal in France.Model parameters are determined,followed by numerical simulations of various laboratory tests including lateral decompression tests with constant mean stress,triaxial compression tests under different water saturation conditions,and creep tests.The numerical results are compared with corresponding experimental data to assess the efficacy of the proposed model. 展开更多
关键词 Clayey rocks MICROMECHANICS ANISOTROPY Plasticity VISCOPLASTICITY Debonding damage SATURATION
下载PDF
A pre-strain strategy of current collectors for suppressing electrode debonding in lithium-ion batteries
9
作者 Bo RUI Bo LU +1 位作者 Yicheng SONG Junqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第4期547-560,共14页
The interfacial debonding between the active layer and the current collector has been recognized as a critical mechanism for battery fading,and thus has attracted great efforts focused on the related analyses.However,... The interfacial debonding between the active layer and the current collector has been recognized as a critical mechanism for battery fading,and thus has attracted great efforts focused on the related analyses.However,much still remains to be studied regarding practical methods for suppressing electrode debonding,especially from the perspective of mechanics.In this paper,a pre-strain strategy of current collectors to alleviate electrode debonding is proposed.An analytical model for a symmetric electrode with a deformable and limited-thickness current collector is developed to analyze the debonding behavior involving both a pre-strain of the current collector and an eigen-strain of the active layers.The results reveal that the well-designed pre-strain can significantly delay the debonding onset(by up to 100%)and considerably reduce the debonding size.The critical values of the pre-strain are identified,and the pre-strain design principles are also provided.Based on these findings,this work sheds light on the mechanical design to suppress electrode degradation. 展开更多
关键词 PRE-STRAIN current collector electrode debonding lithium-ion battery(LIB) mechanically-based design
下载PDF
INTERFACIAL DEBONDING OF COATED-FIBER-REINFORCED COMPOSITES UNDER TENSION-TENSION CYCLIC LOADING 被引量:7
10
作者 石志飞 周利民 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2000年第4期347-356,共10页
A new degradation function of the friction coefficient is used.Based on the double shear-lag model and Paris formula,the interracial damage of coated- fiber-reinforced composites under tension-tension cyclic loading i... A new degradation function of the friction coefficient is used.Based on the double shear-lag model and Paris formula,the interracial damage of coated- fiber-reinforced composites under tension-tension cyclic loading is studied.The effects of strength and thickness of the coating materials on the debond stress,debond rate as well as debond length are simulated. 展开更多
关键词 interfacial debonding cyclic loading COATING fiber-reinforced composite
下载PDF
Numerical Simulation of Particle/Matrix Interface Failure in Composite Propellant 被引量:6
11
作者 常武军 鞠玉涛 +2 位作者 韩波 胡少青 王政时 《Defence Technology(防务技术)》 SCIE EI CAS 2012年第3期146-153,共8页
Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its mi... Interface debonding between particle and matrix in composite propellant influences its macroscopic mechanical properties greatly. For this, the laws of interface cohesive damage and failure were analyzed. Then, its microscopic computational model was established. The interface mechanical response was modeled by the bilinear cohesive zone model. The effects of interface properties and particle sizes on the macroscopic mechanical behavior were investigated. Numerical simulation of debonding damage evolution of composite propellant under finite deformation was carried out. The debonding damage nucleation, propagation mechanism and non-uniform distribution of microscopic stress-strain fields were discussed. The results show that the finite element simulation method based on microstructure model can effectively predict the trend of macroscopic mechanical behavior and particle/matrix debonding evolution process. It can be used for damage simulation and failure assessment of composite propellants. 展开更多
关键词 propulsion system of aviation and aerospace interface debonding cohesive zone model composite propellant cohesive element damage evolution
下载PDF
Study on ASTM Shear-loaded Adhesive Lap Joints 被引量:5
12
作者 关志东 吴爱国 王进 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2004年第2期79-86,共8页
Finite element analyses and experiments are conducted to analyze the mechanical behavior of ASTM shear-loaded adhesive lap joints. Adhesive is characterized for the stress-strain relation by comparing the apparent she... Finite element analyses and experiments are conducted to analyze the mechanical behavior of ASTM shear-loaded adhesive lap joints. Adhesive is characterized for the stress-strain relation by comparing the apparent shear-strain relations obtained from finite element analysis and experiments following ASTM D 5656 Standard. With the established stress-strain relation, two failure criteria using equivalent plastic strain and J-integral are adopted to predict the failure loads for joint specimens following ASTM D 5656 and ASTM D 3165 Standard, respectively. Good correlation is found between the finite element results and the experimental results. The strength of ASTM D 3165 specimens with debonding defects is also studied. Calculation results shows that experiment data following the standards provide only relative material constants, such as apparent shear modulus and strengths. Further investigation is required to find out the engineering properties needed for actual joint design. For the specimens with debonding defects, the locations of defects have great effects on their load bearing ability. 展开更多
关键词 adhesive-bonded joint engineering property of adhesive strength of adhesive bond-bonded joint debonding defect
下载PDF
Flexural Performance of CFRP-Bamboo Scrimber Composite Beams 被引量:4
13
作者 Xizhi Wu Xueyou Huang +1 位作者 Xianjun Li Yiqiang Wu 《Journal of Renewable Materials》 SCIE 2019年第12期1295-1307,共13页
This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer(CFRP)to address the low stiffness and strength of bamboo scrimbers.Three-point bending test and finite element model w... This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer(CFRP)to address the low stiffness and strength of bamboo scrimbers.Three-point bending test and finite element model were conducted to study the failure mode,strain-displacement relationship,load-displacement relationship and relationships between strain distribution,contact pressure and deflection,and adhesive debonding.The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets.The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams,and the flexural strength were 1.49-1.58 times that of bamboo scrimber beams.Adhesive debonding had a great influence on the strain distribution and deflection of the composite specimens.It was an important factor for the failure of the CFRP-bamboo scrimber composite specimens.According to the finite element simulation,the strain distribution,contact pressure and deflection also greatly changed with the adhesive debonding.After complete peeling,the deflection of the specimen was 3.09 times that of the unpeeled because it was no longer an integral beam. 展开更多
关键词 Bamboo scrimber carbon fiber reinforced polymer(CFRP) flexural performance adhesive debonding
下载PDF
MECHANICAL PERFORMANCE OF NANO-CaCO_3 FILLED POLYSTYRENE COMPOSITES 被引量:2
14
作者 Yun Gao Luqi Liu Zhong Zhang 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第6期555-562,共8页
Nano-CaCO3 incorporated polystyrene composites are compounded by twin-screw extrusion. Tensile and compact tensile tests show that the strength and toughness of polystyrene are decreased after the addition of nano-CaC... Nano-CaCO3 incorporated polystyrene composites are compounded by twin-screw extrusion. Tensile and compact tensile tests show that the strength and toughness of polystyrene are decreased after the addition of nano-CaCO3 particles. Fracture surface analysis suggests that the defects induced by interfacial debonding and nano-filler agglomerations would be the key factors responsible for the declined strength and toughness. Nevertheless, it has to be stated, if the applied stress is lower than the ultimate strength, the rigid nanoparticles would still stiffen the polymer molecules, and resist polymer chain mobility. Hence, the improved tensile modulus and creep resistance can be obtained with the increasing contents of nanoparticles. 展开更多
关键词 NANOCOMPOSITES NANOPARTICLES POLYMERS mechanical properties DEBONDING
下载PDF
Sandstone-concrete interface transition zone (ITZ) damage and debonding micromechanisms under freeze-thaw 被引量:3
15
作者 YanJun Shen Huan Zhang +3 位作者 JinYuan Zhang HongWei Yang Xu Wang Jia Pan 《Research in Cold and Arid Regions》 CSCD 2021年第2期133-149,共17页
The sufficient bond between concrete and rock is an important prerequisite to ensure the effect of shotcrete support. However, in cold regions engineering protection system, the bond condition of rock and concrete sur... The sufficient bond between concrete and rock is an important prerequisite to ensure the effect of shotcrete support. However, in cold regions engineering protection system, the bond condition of rock and concrete surface is easily affected by freeze-thaw cycles, resulting in interface damage, debonding and even supporting failure. Understanding the micromechanisms of the damage and debonding of the rock-concrete interface is essential for improving the interface protection.Therefore, the micromorphology, micromechanical properties, and microdebonding evolution of the sandstone-concrete interface transition zone(ITZ) under varying freeze-thaw cycles(0, 5, 10, 15, 20) were studied using scanning electron microscope, stereoscopic microscope, and nano-indentation. Furthermore, the distribution range and evolution process of ITZ affected by freeze-thaw cycles were defined. Major findings of this study are as follows:(1) The microdamage evolution law of the ITZ under increasing freeze-thaw cycles is clarified, and the relationship between the number of cracks in the ITZ and freeze-thaw cycles is established;(2) As the number of freeze-thaw cycles increases, the ITZ's micromechanical strength decreases, and its development width tends to increase;(3) The damage and debonding evolution mechanisms of sandstone-concrete ITZ under freeze-thaw cycles is revealed, and its micromechanical evolution model induced by freeze-thaw cycles is proposed. 展开更多
关键词 sandstone-concrete interface transition zone(ITZ) freeze-thaw cycles nano-indentation damage and debonding
下载PDF
Debonding Failure in FRP Reinforced SHCC Beams Induced from MultipleFlexural-Shear Cracks under Three-Point Bending Test 被引量:1
16
作者 Jihong Hu Mingqing Sun +1 位作者 Wei Huang Yingjun Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期191-207,共17页
Strain hardening cement-based composites(SHCC)beam externally bonded with glass fiber-reinforced polymer(FRP)plate was examined under three-point flexural test.The effects of the type of substrate used(plain cement mo... Strain hardening cement-based composites(SHCC)beam externally bonded with glass fiber-reinforced polymer(FRP)plate was examined under three-point flexural test.The effects of the type of substrate used(plain cement mortar vs.SHCC),the use or not of a FRP plate to strengthen the SHCC beam,and the thickness of the FRP plate on the flexural performances were studied.Results show that the ultimate load of SHCC beams strengthened with FRP plate has improved greatly in comparison with plain SHCC beams.The deformation capacity of beams makes little change with an increase in the thickness of FRP plates.The formation of multiple flexural-shear cracks(MFSC)is the unique feature of SHCC beams bonded with FRP plates under three-point bending.The debonding of the FRP plate is initiated from MFSC.The initiated debonding area(IDA)is formed by the joint points of the flexural-shear cracks with the FRP plate.Then the debonding strain is represented using the average strain of FRP plate within IDA,which decreases with an increase of FRP plate thickness.The experimental values of the debonding strain of SHCC beam reinforced with FRP plate are close to those predicted by the JSCE’s equation. 展开更多
关键词 SHCC FRP debonding strain flexural-shear crack initiated debonding area
下载PDF
Effect of Interfacial Strength on the Flexural Behavior of Glass Fiber Reinforced Polymer(GFRP) Reinforced Concrete Beam 被引量:1
17
作者 张亚芳 YANG Wenlong +2 位作者 LIU Hao CHEN Peiran LIU Feng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期1001-1007,共7页
The reinforcement/matrix interfacial strength has been considered as the key factor when glass fiber reinforced polymer(GFRP) bar is mixed with concrete. In this paper, based on micromechanics, fourpoint bending numer... The reinforcement/matrix interfacial strength has been considered as the key factor when glass fiber reinforced polymer(GFRP) bar is mixed with concrete. In this paper, based on micromechanics, fourpoint bending numerical models with and without glass fiber of different interfacial strength have been set up to simulate the damage process of GFRP reinforced concrete beam. The results show that the higher the interfacial strength is, the higher the ultimate bearing capacity of beams, and the less the opening width and height of cracks will be reached. Furthermore, mixing of glass fibers has less influence on the damage process when the interfacial strength is weak, however, it can help to improve the ultimate bearing capacity of the beams, retard the expansion of cracks and improve the toughness when the interfacial strength is high. 展开更多
关键词 interfacial strength GFRP damage process DEBONDING numerical simulation
下载PDF
Micromechanics-based model for cement-treated clays 被引量:1
18
作者 Zhenyu Yin Pierre Yves Hicher 《Theoretical & Applied Mechanics Letters》 CAS 2013年第2期30-36,共7页
Cementation is produced by mixing a certain amount of cement with the saturated clay. The purpose of this paper is to model the cementation effect on the mechanical behavior of cement-treated clay. A micromechanical s... Cementation is produced by mixing a certain amount of cement with the saturated clay. The purpose of this paper is to model the cementation effect on the mechanical behavior of cement-treated clay. A micromechanical stress-strain model is developed considering explicitly the cementation at inter-cluster contacts. The inter-cluster bonding and debonding during mechanical loading are introduced in two ways: an additional cohesion in the shear sliding and a higher yield stress in normal compression. The model is used to simulate isotropic compression and undrained triaxial tests under various confining stresses on cement-treated Singapore clay with various cement contents. The applicability of the present model is evaluated through comparisons between numerical and experimental results. The evolution of local stresses and local strains in inter-cluster planes is dis- cussed in order to explain the induced anisotropy due to debonding at contact level under the applied loads. 展开更多
关键词 MICROSTRUCTURE CEMENTATION constitutive model CLAY ANISOTROPY DEBONDING
下载PDF
Debonding Patch Detection in FRP-Strengthened Materials with Fiber-Optic Interferometer 被引量:1
19
作者 Xu Ying Wang Dexiang +1 位作者 Tang Tianyou Lu Miaomiao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2017年第3期255-264,共10页
The interfacial debonding in fiber-reinforced plastic(FRP)strengthened repair material will affect the bonding strength and lead to failure of the repair without warning.Unfortunately the interfacial damage is normall... The interfacial debonding in fiber-reinforced plastic(FRP)strengthened repair material will affect the bonding strength and lead to failure of the repair without warning.Unfortunately the interfacial damage is normally invisible and often in the form of a patch rather than a through-width crack.Therefore,a debonding patch detection technique based on fiber optic interferometry is proposed.A quasi-impulse loading is applied with a rubberhead hammer and the total elongation of a surface-mounted optical fiber along the length of the repair material is measured as a function of load position.When a debonding patch is present,the induced sudden slope or sign change on the plot of fiber integral strain v.s.load position will reveal the extent and the location of the debonded area.The results of the study indicate that the proposed technique is applicable for debonding patch detection in repaired members under various support conditions. 展开更多
关键词 fiber-reinforced plastic(FRP) bonded repair debonding patch fiber-optic interferometer nondestructive testing
下载PDF
Micro-annulus generation under downhole conditions: Insights from three-dimensional staged finite element analysis of cement hardening and wellbore operations 被引量:1
20
作者 Weicheng Zhang Andreas Eckert 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1185-1200,共16页
A micro-annulus(MA)is defined as a high permeability zone or gap initiating/occurring at the casingcement and cement-formation interfaces during the wellbore life span.An MA can significantly compromise wellbore integ... A micro-annulus(MA)is defined as a high permeability zone or gap initiating/occurring at the casingcement and cement-formation interfaces during the wellbore life span.An MA can significantly compromise wellbore integrity by establishing enhanced fluid flow pathways.This study uses a staged finite element approach to simulate wellbore integrity during various loading steps of wellbore operations under downhole conditions.Particular emphasis is placed on the processes of cement poro-elastic property evolution,volume variation,and pore pressure variation as part of the cement hardening step.The resulting state of stress during the life cycle of a typical injection well(i.e.hardening,completion,and injection)is analyzed to assess the onset and evolution of micro-annuli at various interfaces of the composite wellbore system under downhole conditions.The results show that cement shear failure is observed at the casing-cement interface during pressure testing(excessive wellbore pressure);and tensile debonding failure initiates at the cement-formation interface due to cement shrinkage during hardening and injection-related cooling(thermal cycling).Sensitivity analyses considering several parameters show that:(1)the degree of poro-elastic bulk shrinkage has significant implications for both shear and tensile failure initiation e the less the cement shrinks,the less likely the failure initiation is;(2)cement integrity increases with increasing depth;(3)cement pore pressure evolution has significant implications for tensile failure e if cement pore pressure decreases more,higher temperature differences can be sustained before an MA occurs;and(4)cement temperature fluctuations during hardening promote initiation of debonding failure.In summary,the results presented indicate that establishing downhole conditions to quantitatively analyze MA generation is necessary.The results are different compared to laboratory studies without considering/simulating downhole conditions.The knowledge from this study can raise the awareness of predicting and evaluating MA under downhole conditions and can be used to supplement and improve future laboratory experiments. 展开更多
关键词 Micro-annulus DEBONDING Staged finite element analysis Cement hardening Poro-elastic bulk shrinkage Pore pressure Temperature fluctuation
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部